Completely ω-balanced topological groups

被引:11
作者
Juarez-Anguiano, Hugo [1 ]
Sanchez, Ivan [2 ]
机构
[1] Univ Autonoma Metropolitana, Dept Matemat, Av San Rafael Atlixco 186,Col Vicentina, Mexico City 09940, DF, Mexico
[2] Univ Jaume 1, IMAC, Campus Riu Sec, Castellon de La Plana 12071, Spain
关键词
Strongly realcompact; Strongly Dieudonne-complete; Strongly delta-complete; omega-narrow; Completely omega-balanced; omega-balanced;
D O I
10.1016/j.topol.2016.03.008
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that a topological group G admits a homeomorphic embedding as a subgroup into a product of strongly metrizable groups if and only if G is completely omega-balanced. Using this fact we obtain a characterization of strongly delta-complete topological groups, i.e., closed subgroups of a product of strongly metrizable groups. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:198 / 203
页数:6
相关论文
共 9 条
[1]  
ARHANGELSKII AV, 2008, ATLANTIS SERIES MATH, V1
[2]  
Engelking R., 1989, General topology
[3]  
Garcia-Maynez A., 1995, ANN NY ACAD SCI, V552, P36
[4]  
Garcia-Maynez A., 1981, Topol. Proc, V6, P345
[5]  
Juarez-Anguiano H., 2016, TOPOL APPL IN PRESS
[6]  
Lukacs G., 2009, RES EXP MATH, V31
[7]   Totally Lindelof and totally ω-narrow paratopological groups [J].
Sanchis, Manuel ;
Tkachenko, Mikhail .
TOPOLOGY AND ITS APPLICATIONS, 2008, 155 (04) :322-334
[8]   Strong realcompactness and strong Dieudonne completeness in topological groups [J].
Tkachenko, M. G. ;
Hernandez-Garcia, C. ;
Lopez Ramirez, M. A. .
TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) :1948-1955
[9]  
Zarelua A.V., 1966, TRANSL AM MATH SOC, V55, P141