Discussing porosity loss of Fe0 packed water filters at ground level

被引:71
作者
Domga, Richard [1 ]
Togue-Kamga, Fulbert [2 ]
Noubactep, Chicgoua [3 ,4 ,5 ]
Tchatchueng, Jean-Bosco [1 ,6 ]
机构
[1] Univ Ngaoundere, ENSAI, Dept Appl Chem, Lab Ind & Pollut Chem, Ngaoundere, Cameroon
[2] Univ Douala, Inst Fisheries & Aquat Sci Yabassi, Douala, Cameroon
[3] Univ Gottingen, D-37077 Gottingen, Germany
[4] Kultur & Nachhaltige Entwicklung CDD eV, D-37005 Gottingen, Germany
[5] Com Afro Europeen, B-5000 Namur, Belgium
[6] Univ Maroua, Dept Chem, Maroua, Cameroon
关键词
Depth filtration; Permeability loss; Volumetric expansion; Water treatment; Zero-valent iron; INDUSTRIAL WASTE-WATER; COMPOSITE IRON MATRIX; LONG-TERM PERFORMANCE; METALLIC IRON; GRANULAR IRON; MINERAL PRECIPITATION; REMOVAL; FILTRATION; DESIGN; PERMEABILITY;
D O I
10.1016/j.cej.2014.10.105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The use of granular metallic iron (Fe-0) as filter material is gaining acceptance in the field of water treatment. Few works have been directed at developing design guidance for efficient Fe-0 filters. This note consolidates earlier works and provides the scientific basis for the design and evaluation of Fe-0 filters for water treatment at any scale. The approach assumes uniform corrosion of individual Fe-0 particles and utilizes the radius loss (X = R-0 - R) to asses the extent of porosity loss in the whole system. Results corroborate that, for R-0 <= 1.0 mm, sustainable filters must content less than 53% Fe-0 (v/v). A universal equation of Fe-0 filters is provided given X as a function of the initial radius R-0, the initial volume of Fe-0, the initial porosity of the filter and the coefficient of volumetric expansion (O-2 availability). This equation should be routinely incorporated in simulations for modeling the hydraulic conductivity of Fe-0 filters. The model improves the discussion of published data on porosity loss. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 65 条
  • [41] Impact of Fe0 amendment on methylene blue discoloration by sand columns
    Miyajima, K.
    Noubactep, C.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2013, 217 : 310 - 319
  • [42] Miyajima K., 2012, Freiberg Online Geosci, V32, P1
  • [43] Arsenic Removal with Composite Iron Matrix Filters in Bangladesh: A Field and Laboratory Study
    Neumann, Anke
    Kaegi, Ralf
    Voegelin, Andreas
    Hussam, Abul
    Munir, Abut K. M.
    Hug, Stephan J.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2013, 47 (09) : 4544 - 4554
  • [44] Dimensioning metallic iron beds for efficient contaminant removal
    Noubactep, C.
    Care, S.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2010, 163 (03) : 454 - 460
  • [45] On nanoscale metallic iron for groundwater remediation
    Noubactep, C.
    Care, S.
    [J]. JOURNAL OF HAZARDOUS MATERIALS, 2010, 182 (1-3) : 923 - 927
  • [46] Flaws in the design of Fe(0)-based filtration systems?
    Noubactep, Chicgoua
    [J]. CHEMOSPHERE, 2014, 117 : 104 - 107
  • [47] Extending Service Life of Household Water Filters by Mixing Metallic Iron with Sand
    Noubactep, Chicgoua
    Care, Sabine
    Kamga, Fulbert Togue
    Schoner, Angelika
    Woafo, Paul
    [J]. CLEAN-SOIL AIR WATER, 2010, 38 (10) : 951 - 959
  • [48] Metallic Iron Filters for Universal Access to Safe Drinking Water
    Noubactep, Chicgoua
    Schoener, Angelika
    Woafo, Paul
    [J]. CLEAN-SOIL AIR WATER, 2009, 37 (12) : 930 - 937
  • [49] Long-term performance of an in situ "iron wall" for remediation of VOCs
    O'Hannesin, SF
    Gillham, RW
    [J]. GROUND WATER, 1998, 36 (01) : 164 - 170
  • [50] Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater
    Phillips, D. H.
    Van Nooten, T.
    Bastiaens, L.
    Russell, M. I.
    Dickson, K.
    Plant, S.
    Ahad, J. M. E.
    Newton, T.
    Elliot, T.
    Kalin, R. M.
    [J]. ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (10) : 3861 - 3869