Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations

被引:2
作者
Nagy, A. M. [1 ]
机构
[1] Benha Univ, Dept Math, Fac Sci, Banha 13518, Egypt
关键词
Variable-Order fractional differential equations; Non-standard finite difference schemes; Riemann-Liouville definition; Grunwald-Letinkov definition; viscous-viscoelasticity oscillator model; SHIFTED CHEBYSHEV POLYNOMIALS; CALCULUS; DYNAMICS; KIND;
D O I
10.1007/s12591-017-0378-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-standard finite difference (NSFD) methodology of Mickens is a popular method for the solution of differential equations. In this paper, we discusses how we can generalize NSFD schemes for solving variable-order fractional problems. The variable-order fractional derivatives are described in the Riemann-Liouville and Grunwald-Letinkov sense. Special attention is given to the Grunwald-Letinkov definition which is used to approximate the variable-order fractional derivatives. Some applications of the variable-order fractional in viscous-viscoelasticity oscillator model and chaotic financial system are included to demonstrate the validity and applicability of the proposed technique.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 38 条
[21]  
Miller KS, 1993, An Introduction to the Fractional Calculus and Fractional Differential Equations
[22]   An efficient method for solving fractional Hodgkin-Huxley model [J].
Nagy, A. M. ;
Sweilam, N. H. .
PHYSICS LETTERS A, 2014, 378 (30-31) :1980-1984
[23]   Nonstandard finite difference schemes for a fractional-order Brusselator system [J].
Ongun, Mevlude Yakit ;
Arslan, Damla ;
Garrappa, Roberto .
ADVANCES IN DIFFERENCE EQUATIONS, 2013,
[24]  
Podlubny I., 1999, FRACTIONAL DIFFERENT
[25]   On the variable order dynamics of the nonlinear wake caused by a sedimenting particle [J].
Ramirez, Lynnette E. S. ;
Coimbra, Carlos F. M. .
PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (13) :1111-1118
[26]  
Samko SG, 1995, Anal. Math., V21, P213
[27]   The variable viscoelasticity oscillator [J].
Soon, CM ;
Coimbra, CFM ;
Kobayashi, MH .
ANNALEN DER PHYSIK, 2005, 14 (06) :378-389
[28]   On the numerical solution of space fractional order diffusion equation via shifted Chebyshev polynomials of the third kind [J].
Sweilam, N. H. ;
Nagy, A. M. ;
El-Sayed, Adel A. .
JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2016, 28 (01) :41-47
[29]   Solving Time-Fractional Order Telegraph Equation Via Sinc-Legendre Collocation Method [J].
Sweilam, N. H. ;
Nagy, A. M. ;
El-Sayed, Adel A. .
MEDITERRANEAN JOURNAL OF MATHEMATICS, 2016, 13 (06) :5119-5133
[30]   Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation [J].
Sweilam, N. H. ;
Nagy, A. M. ;
El-Sayed, Adel A. .
CHAOS SOLITONS & FRACTALS, 2015, 73 :141-147