Non-Standard Finite Difference Schemes for Solving Variable-Order Fractional Differential Equations

被引:2
作者
Nagy, A. M. [1 ]
机构
[1] Benha Univ, Dept Math, Fac Sci, Banha 13518, Egypt
关键词
Variable-Order fractional differential equations; Non-standard finite difference schemes; Riemann-Liouville definition; Grunwald-Letinkov definition; viscous-viscoelasticity oscillator model; SHIFTED CHEBYSHEV POLYNOMIALS; CALCULUS; DYNAMICS; KIND;
D O I
10.1007/s12591-017-0378-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A non-standard finite difference (NSFD) methodology of Mickens is a popular method for the solution of differential equations. In this paper, we discusses how we can generalize NSFD schemes for solving variable-order fractional problems. The variable-order fractional derivatives are described in the Riemann-Liouville and Grunwald-Letinkov sense. Special attention is given to the Grunwald-Letinkov definition which is used to approximate the variable-order fractional derivatives. Some applications of the variable-order fractional in viscous-viscoelasticity oscillator model and chaotic financial system are included to demonstrate the validity and applicability of the proposed technique.
引用
收藏
页码:623 / 632
页数:10
相关论文
共 38 条
[1]  
Agarwal P., ARXIV161101624
[2]   FRACTIONAL CALCULUS OPERATORS AND THEIR IMAGE FORMULAS [J].
Agarwal, Praveen ;
Choi, Junesang .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2016, 53 (05) :1183-1210
[3]   Some fractional integral formulas for the Mittag-Leffler type function with four parameters [J].
Agarwal, Praveen ;
Nieto, Juan J. .
OPEN MATHEMATICS, 2015, 13 :537-546
[4]  
[Anonymous], 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[5]  
Ayala R., 2007, INTRO CONCEPTS APPL
[6]   A THEORETICAL BASIS FOR THE APPLICATION OF FRACTIONAL CALCULUS TO VISCOELASTICITY [J].
BAGLEY, RL ;
TORVIK, PJ .
JOURNAL OF RHEOLOGY, 1983, 27 (03) :201-210
[7]   Nonlinear dynamics and chaos in a fractional-order financial system [J].
Chen, Wei-Ching .
CHAOS SOLITONS & FRACTALS, 2008, 36 (05) :1305-1314
[8]   Mechanics with variable-order differential operators [J].
Coimbra, CFM .
ANNALEN DER PHYSIK, 2003, 12 (11-12) :692-703
[9]   Fractional calculus via functional calculus:: Theory and applications [J].
Kempfle, S ;
Schäfer, I ;
Beyer, H .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :99-127
[10]  
Kiymaz IO, 2016, J NONLINEAR SCI APPL, V9, P3611