Learning Modality-Invariant Latent Representations for Generalized Zero-shot Learning

被引:25
|
作者
Li, Jingjing [1 ]
Jing, Mengmeng [1 ]
Zhu, Lei [2 ]
Ding, Zhengming [3 ]
Lu, Ke [1 ]
Yang, Yang [1 ]
机构
[1] Univ Elect Sci & Technol China, Chengdu, Peoples R China
[2] Shandong Normal Univ, Jinan, Shandong, Peoples R China
[3] Indiana Univ Purdue Univ, Indianapolis, IN 46202 USA
来源
MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA | 2020年
基金
中国国家自然科学基金;
关键词
Zero-shot learning; mutual information estimation; generalized ZSL; variational autoencoders;
D O I
10.1145/3394171.3413503
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, feature generating methods have been successfully applied to zero-shot learning (ZSL). However, most previous approaches only generate visual representations for zero-shot recognition. In fact, typical ZSL is a classic multi-modal learning protocol which consists of a visual space and a semantic space. In this paper, therefore, we present a new method which can simultaneously generate both visual representations and semantic representations so that the essential multi-modal information associated with unseen classes can be captured. Specifically, we address the most challenging issue in such a paradigm, i.e., how to handle the domain shift and thus guarantee that the learned representations are modality-invariant. To this end, we propose two strategies: 1) leveraging the mutual information between the latent visual representations and the semantic representations; 2) maximizing the entropy of the joint distribution of the two latent representations. By leveraging the two strategies, we argue that the two modalities can be well aligned. At last, extensive experiments on five widely used datasets verify that the proposed method is able to significantly outperform previous the state-of-the-arts.
引用
收藏
页码:1348 / 1356
页数:9
相关论文
共 50 条
  • [1] Learning MLatent Representations for Generalized Zero-Shot Learning
    Ye, Yalan
    Pan, Tongjie
    Luo, Tonghoujun
    Li, Jingjing
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 2252 - 2265
  • [2] Salient Latent Features For Zero-shot Learning
    Pan, Zongrong
    Li, Jian
    Zhu, Anna
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON ROBOT SYSTEMS AND APPLICATIONS, ICRSA2020, 2020, : 40 - 44
  • [3] A Review of Generalized Zero-Shot Learning Methods
    Pourpanah, Farhad
    Abdar, Moloud
    Luo, Yuxuan
    Zhou, Xinlei
    Wang, Ran
    Lim, Chee Peng
    Wang, Xi-Zhao
    Wu, Q. M. Jonathan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (04) : 4051 - 4070
  • [4] A Unified Approach for Conventional Zero-Shot, Generalized Zero-Shot, and Few-Shot Learning
    Rahman, Shafin
    Khan, Salman
    Porikli, Fatih
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (11) : 5652 - 5667
  • [5] Zero-shot recognition with latent visual attributes learning
    Xie, Yurui
    He, Xiaohai
    Zhang, Jing
    Luo, Xiaodong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (37-38) : 27321 - 27335
  • [6] Zero-shot recognition with latent visual attributes learning
    Yurui Xie
    Xiaohai He
    Jing Zhang
    Xiaodong Luo
    Multimedia Tools and Applications, 2020, 79 : 27321 - 27335
  • [7] Discriminative Latent Attribute Autoencoder for Zero-Shot Learning
    Chen, Runqing
    Wu, Songsong
    Sun, Guangcheng
    PROCEEDINGS OF 2018 5TH IEEE INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND INTELLIGENCE SYSTEMS (CCIS), 2018, : 873 - 877
  • [8] Generating visual representations for zero-shot learning via adversarial learning and variational autoencoders
    Gull, Muqaddas
    Arif, Omar
    INTERNATIONAL JOURNAL OF GENERAL SYSTEMS, 2023, 52 (05) : 636 - 651
  • [9] Zero-shot learning with regularized cross-modality ranking
    Yu, Yunlong
    Ji, Zhong
    Guo, Jichang
    Pang, Yanwei
    NEUROCOMPUTING, 2017, 259 : 14 - 20
  • [10] Class-Incremental Generalized Zero-Shot Learning
    Zhenfeng Sun
    Rui Feng
    Yanwei Fu
    Multimedia Tools and Applications, 2023, 82 : 38233 - 38247