Anticanonical system of Fano fivefolds

被引:5
|
作者
Horing, Andreas [1 ]
Smiech, Robert [2 ]
机构
[1] Univ Cote Azur, CNRS, LJAD, Nice, France
[2] Univ Warsaw, Fac Math Informat & Mech, Ul Banacha 2, PL-02097 Warsaw, Poland
关键词
anticanonical system; Fano varieties; fivefolds; linear system; nonvanishing;
D O I
10.1002/mana.201900311
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any Fano fivefold with canonical Gorenstein singularities has an effective anticanonical divisor. Moreover, if a general element of the anticanonical system is reduced, then it has canonical singularities.
引用
收藏
页码:115 / 119
页数:5
相关论文
共 50 条
  • [31] Singularities of Cox rings of Fano varieties
    Brown, Morgan
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 99 (06): : 655 - 667
  • [32] Fano manifolds with Lefschetz defect 3
    Casagrande, C.
    Romano, E. A.
    Secci, S. A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 163 : 625 - 653
  • [33] Extremal metrics on two Fano varieties
    Cheltsov, I. A.
    SBORNIK MATHEMATICS, 2009, 200 (1-2) : 95 - 132
  • [34] The Mukai Conjecture for Fano Quiver Moduli
    Reineke, Markus
    ALGEBRAS AND REPRESENTATION THEORY, 2024, 27 (04) : 1641 - 1644
  • [35] Fano varieties with large Seshadri constants
    Zhuang, Ziquan
    ADVANCES IN MATHEMATICS, 2018, 340 : 883 - 913
  • [36] Linear systems on Fano threefolds II
    Lee, S
    MATHEMATISCHE ZEITSCHRIFT, 2004, 248 (04) : 893 - 909
  • [37] Toric G-Fano threefolds
    Sarikyan, Arman
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2022, 33 (05)
  • [38] Q-FANO THREEFOLDS AND LAURENT INVERSION
    Heuberger, Liana
    NAGOYA MATHEMATICAL JOURNAL, 2025,
  • [39] Bounds for smooth Fano weighted complete intersections
    Przyjalkowski, Victor
    Shramov, Constantin
    COMMUNICATIONS IN NUMBER THEORY AND PHYSICS, 2020, 14 (03) : 511 - 553
  • [40] Cox rings of cubic surfaces and Fano threefolds
    Derenthal, Ulrich
    Hausen, Juergen
    Heim, Armand
    Keicher, Simon
    Laface, Antonio
    JOURNAL OF ALGEBRA, 2015, 436 : 228 - 276