Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

被引:0
|
作者
Antony, Joseph [1 ]
McGuinness, Kevin [1 ]
O'Connor, Noel E. [1 ]
Moran, Kieran [1 ,2 ]
机构
[1] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland
[2] Dublin City Univ, Sch Hlth & Human Performance, Dublin, Ireland
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
基金
爱尔兰科学基金会; 美国国家卫生研究院;
关键词
Knee osteoarthritis; KL grades; Convolutional neural network; classification; regression; wndchrm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to automatically quantify the severity of knee osteoarthritis (OA) from radiographs using deep convolutional neural networks (CNN). Clinically, knee OA severity is assessed using Kellgren & Lawrence (KL) grades, a five point scale. Previous work on automatically predicting KL grades from radiograph images were based on training shallow classifiers using a variety of hand engineered features. We demonstrate that classification accuracy can be significantly improved using deep convolutional neural network models pre-trained on ImageNet and fine-tuned on knee OA images. Furthermore, we argue that it is more appropriate to assess the accuracy of automatic knee OA severity predictions using a continuous distance-based evaluation metric like mean squared error than it is to use classification accuracy. This leads to the formulation of the prediction of KL grades as a regression problem and further improves accuracy. Results on a dataset of X-ray images and KL grades from the Osteoarthritis Initiative (OAI) show a sizable improvement over the current state-of-the-art.
引用
收藏
页码:1195 / 1200
页数:6
相关论文
共 50 条
  • [31] Hyperspectral Data Classification using Deep Convolutional Neural Networks
    Salman, Mesut
    Yuksel, Seniha Esen
    2016 24TH SIGNAL PROCESSING AND COMMUNICATION APPLICATION CONFERENCE (SIU), 2016, : 2129 - 2132
  • [32] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    AEROSPACE, 2023, 10 (09)
  • [33] Structural crack detection using deep convolutional neural networks
    Ali, Raza
    Chuah, Joon Huang
    Abu Talip, Mohamad Sofian
    Mokhtar, Norrima
    Shoaib, Muhammad Ali
    AUTOMATION IN CONSTRUCTION, 2022, 133
  • [34] Multiorgan structures detection using deep convolutional neural networks
    Onieva, Jorge Onieva
    Serrano, German Gonzalez
    Young, Thomas P.
    Washko, George R.
    Ledesma Carbayo, Maria Jesus
    Estepar, Raul San Jose
    MEDICAL IMAGING 2018: IMAGE PROCESSING, 2018, 10574
  • [35] "Texting & Driving" Detection Using Deep Convolutional Neural Networks
    Maria Celaya-Padilla, Jose
    Eric Galvan-Tejada, Carlos
    Anaid Lozano-Aguilar, Joyce Selene
    Alejandra Zanella-Calzada, Laura
    Luna-Garcia, Huizilopoztli
    Issac Galvan-Tejada, Jorge
    Karina Gamboa-Rosales, Nadia
    Velez Rodriguez, Alberto
    Gamboa-Rosales, Hamurabi
    APPLIED SCIENCES-BASEL, 2019, 9 (15):
  • [36] Automatic target recognition using deep convolutional neural networks
    Nasrabadi, Nasser M.
    Kazemi, Hadi
    Iranmanesh, Mehdi
    AUTOMATIC TARGET RECOGNITION XXVIII, 2018, 10648
  • [37] Deep Learning of Graphs with Ngram Convolutional Neural Networks
    Luo, Zhiling
    Liu, Ling
    Yin, Jianwei
    Li, Ying
    Wu, Zhaohui
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2017, 29 (10) : 2125 - 2139
  • [38] A Review on Deep Convolutional Neural Networks
    Aloysius, Neena
    Geetha, M.
    2017 INTERNATIONAL CONFERENCE ON COMMUNICATION AND SIGNAL PROCESSING (ICCSP), 2017, : 588 - 592
  • [39] Fusion of Deep Convolutional Neural Networks
    Suchy, Robert
    Ezekiel, Soundararajan
    Cornacchia, Maria
    2017 IEEE APPLIED IMAGERY PATTERN RECOGNITION WORKSHOP (AIPR), 2017,
  • [40] Measures of knee and gait function and radiographic severity of knee osteoarthritis - A cross-sectional study
    Naili, J. E.
    Brostrom, E. W.
    Clausen, B.
    Holsgaard-Larsen, A.
    GAIT & POSTURE, 2019, 74 : 20 - 26