Quantifying Radiographic Knee Osteoarthritis Severity using Deep Convolutional Neural Networks

被引:0
|
作者
Antony, Joseph [1 ]
McGuinness, Kevin [1 ]
O'Connor, Noel E. [1 ]
Moran, Kieran [1 ,2 ]
机构
[1] Dublin City Univ, Insight Ctr Data Analyt, Dublin, Ireland
[2] Dublin City Univ, Sch Hlth & Human Performance, Dublin, Ireland
来源
2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR) | 2016年
基金
爱尔兰科学基金会; 美国国家卫生研究院;
关键词
Knee osteoarthritis; KL grades; Convolutional neural network; classification; regression; wndchrm;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper proposes a new approach to automatically quantify the severity of knee osteoarthritis (OA) from radiographs using deep convolutional neural networks (CNN). Clinically, knee OA severity is assessed using Kellgren & Lawrence (KL) grades, a five point scale. Previous work on automatically predicting KL grades from radiograph images were based on training shallow classifiers using a variety of hand engineered features. We demonstrate that classification accuracy can be significantly improved using deep convolutional neural network models pre-trained on ImageNet and fine-tuned on knee OA images. Furthermore, we argue that it is more appropriate to assess the accuracy of automatic knee OA severity predictions using a continuous distance-based evaluation metric like mean squared error than it is to use classification accuracy. This leads to the formulation of the prediction of KL grades as a regression problem and further improves accuracy. Results on a dataset of X-ray images and KL grades from the Osteoarthritis Initiative (OAI) show a sizable improvement over the current state-of-the-art.
引用
收藏
页码:1195 / 1200
页数:6
相关论文
共 50 条
  • [21] Classification of Whole Mammogram and Tomosynthesis Images Using Deep Convolutional Neural Networks
    Zhang, Xiaofei
    Zhang, Yi
    Han, Erik Y.
    Jacobs, Nathan
    Han, Qiong
    Wang, Xiaoqin
    Liu, Jinze
    IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2018, 17 (03) : 237 - 242
  • [22] Identifying the species of harvested tuna and billfish using deep convolutional neural networks
    Lu, Yi-Chin
    Tung, Chen
    Kuo, Yan-Fu
    ICES JOURNAL OF MARINE SCIENCE, 2020, 77 (04) : 1318 - 1329
  • [23] Visibility Loss Detection for Video Camera Using Deep Convolutional Neural Networks
    Ivanov, Alexey
    Yudin, Dmitry
    PROCEEDINGS OF THE THIRD INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'18), VOL 1, 2019, 874 : 434 - 443
  • [24] Applying Densely Connected Convolutional Neural Networks for Staging Osteoarthritis Severity from Plain Radiographs
    Norman, Berk
    Pedoi, Valentina
    Noworolski, Adam
    Link, Thomas M.
    Majumdar, Sharmila
    JOURNAL OF DIGITAL IMAGING, 2019, 32 (03) : 471 - 477
  • [25] Can a Convolutional Neural Network Classify Knee Osteoarthritis on Plain Radiographs as Accurately as Fellowship-Trained Knee Arthroplasty Surgeons?
    Schwartz, Adam J.
    Clarke, Henry D.
    Spangehl, Mark J.
    Bingham, Joshua S.
    Etzioni, David A.
    Neville, Matthew R.
    JOURNAL OF ARTHROPLASTY, 2020, 35 (09) : 2423 - 2428
  • [26] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [27] Outdoor Scene Labeling Using Deep Convolutional Neural Networks
    Wen Jun
    Zhong Chaolliang
    Liu Shirong
    Wang Jian
    2015 34TH CHINESE CONTROL CONFERENCE (CCC), 2015, : 3953 - 3958
  • [28] Improved Glioma Grading Using Deep Convolutional Neural Networks
    Gutta, S.
    Acharya, J.
    Shiroishi, M. S.
    Hwang, D.
    Nayak, K. S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2021, 42 (02) : 233 - 239
  • [29] Brain tumor classification using deep convolutional neural networks
    Nurtay, M.
    Kissina, M.
    Tau, A.
    Akhmetov, A.
    Alina, G.
    Mutovina, N.
    COMPUTER OPTICS, 2025, 49 (02) : 253 - 262
  • [30] Abnormality Detection in Mammography using Deep Convolutional Neural Networks
    Xi, Pengcheng
    Shu, Chang
    Goubran, Rafik
    2018 IEEE INTERNATIONAL SYMPOSIUM ON MEDICAL MEASUREMENTS AND APPLICATIONS (MEMEA), 2018, : 354 - 359