Joint cell segmentation and cell type annotation for spatial transcriptomics

被引:53
作者
Littman, Russell [1 ,2 ,3 ]
Hemminger, Zachary [2 ,4 ]
Foreman, Robert [2 ]
Arneson, Douglas [2 ,5 ]
Zhang, Guanglin [1 ]
Gomez-Pinilla, Fernando [1 ]
Yang, Xia [1 ,2 ,3 ]
Wollman, Roy [1 ,2 ,3 ,4 ]
机构
[1] UCLA, Dept Integrat Biol & Physiol, Los Angeles, CA 90095 USA
[2] UCLA, Inst Quantitat & Computat Biosci, Los Angeles, CA 90095 USA
[3] UCLA, Bioinformat Interdept Program, Los Angeles, CA 90095 USA
[4] UCLA, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[5] UCSF, Bakar Inst Computat Hlth Sci, Los Angeles, CA USA
关键词
cell segmentation and annotation; scRNAseq; single cell multiomics integration; spatial differentially expressed genes; spatial transcriptomics; GENE-EXPRESSION; RNA;
D O I
10.15252/msb.202010108
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA hybridization-based spatial transcriptomics provides unparalleled detection sensitivity. However, inaccuracies in segmentation of image volumes into cells cause misassignment of mRNAs which is a major source of errors. Here, we develop JSTA, a computational framework for joint cell segmentation and cell type annotation that utilizes prior knowledge of cell type-specific gene expression. Simulation results show that leveraging existing cell type taxonomy increases RNA assignment accuracy by more than 45%. Using JSTA, we were able to classify cells in the mouse hippocampus into 133 (sub)types revealing the spatial organization of CA1, CA3, and Sst neuron subtypes. Analysis of within cell subtype spatial differential gene expression of 80 candidate genes identified 63 with statistically significant spatial differential gene expression across 61 (sub)types. Overall, our work demonstrates that known cell type expression patterns can be leveraged to improve the accuracy of RNA hybridization-based spatial transcriptomics while providing highly granular cell (sub)type information. The large number of newly discovered spatial gene expression patterns substantiates the need for accurate spatial transcriptomic measurements that can provide information beyond cell (sub)type labels.
引用
收藏
页数:15
相关论文
共 53 条
[1]   SpaGE: Spatial Gene Enhancement using scRNA-seq [J].
Abdelaal, Tamim ;
Mourragui, Soufiane ;
Mahfouz, Ahmed ;
Reinders, Marcel J. T. .
NUCLEIC ACIDS RESEARCH, 2020, 48 (18) :E107-E107
[2]   Improved Automatic Detection and Segmentation of Cell Nuclei in Histopathology Images [J].
Al-Kofahi, Yousef ;
Lassoued, Wiem ;
Lee, William ;
Roysam, Badrinath .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2010, 57 (04) :841-852
[3]  
[Anonymous], 2019, CELL, DOI [DOI 10.1016/j.cell.2019.05.031, DOI 10.1016/J.CELL.2019.05.031]
[4]   A Spatiotemporal Organ-Wide Gene Expression and Cell Atlas of the Developing Human Heart [J].
Asp, Michaela ;
Giacomello, Stefania ;
Larsson, Ludvig ;
Wu, Chenglin ;
Furth, Daniel ;
Qian, Xiaoyan ;
Wardell, Eva ;
Custodio, Joaquin ;
Reimegard, Johan ;
Salmen, Fredrik ;
Osterholm, Cecilia ;
Stahl, Patrik L. ;
Sundstrom, Erik ;
Akesson, Elisabet ;
Bergmann, Olaf ;
Bienko, Magda ;
Mansson-Broberg, Agneta ;
Nilsson, Mats ;
Sylven, Christer ;
Lundeberg, Joakim .
CELL, 2019, 179 (07) :1647-+
[5]   Optimization with Sparsity-Inducing Penalties [J].
Bach, Francis ;
Jenatton, Rodolphe ;
Mairal, Julien ;
Obozinski, Guillaume .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2012, 4 (01) :1-106
[6]  
Beucher SLC., 1979, P INT WORKSH IM PROC
[7]  
Biancalani T., 2020, BIORXIV, DOI [10.1101/2020.08.29.272831v1, DOI 10.1101/2020.08.29.272831V1]
[8]   Spatial transcriptomics coming of age [J].
Burgess, Darren J. .
NATURE REVIEWS GENETICS, 2019, 20 (06) :317-317
[9]   Split-and-merge Procedure for Image Segmentation using Bimodality Detection Approach [J].
Chaudhuri, D. ;
Agrawal, A. .
DEFENCE SCIENCE JOURNAL, 2010, 60 (03) :290-301
[10]   Spatially resolved, highly multiplexed RNA profiling in single cells [J].
Chen, Kok Hao ;
Boettiger, Alistair N. ;
Moffitt, Jeffrey R. ;
Wang, Siyuan ;
Zhuang, Xiaowei .
SCIENCE, 2015, 348 (6233)