Reactive Oxygen Species and Nitric Oxide Control Early Steps of the Legume - Rhizobium Symbiotic Interaction

被引:61
|
作者
Damiani, Isabelle [1 ]
Pauly, Nicolas [1 ]
Puppo, Alain [1 ]
Brouquisse, Renaud [1 ]
Boscari, Alexandre [1 ]
机构
[1] Univ Nice Sophia Antipolis, CNRS, Inst Sophia Agrobiotech, UMR INRA, Sophia Antipolis, France
来源
关键词
legume; nitric oxide; nitrogen fixation; Rhizobium; symbiosis; 1 HEMOGLOBIN GENE; MEDICAGO-TRUNCATULA; HYDROGEN-PEROXIDE; SINORHIZOBIUM-MELILOTI; NADPH OXIDASE; CELL-DEATH; OPTIMAL ESTABLISHMENT; OXIDATIVE BURST; LOTUS-JAPONICUS; S-NITROSYLATION;
D O I
10.3389/fpls.2016.00454
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The symbiotic interaction between legumes and nitrogen fixing rhizobium bacteria leads to the formation of a new organ, the nodule. Early steps of the interaction are characterized by the production of bacterial Nod factors, the reorientation of root-hair tip growth, the formation of an infection thread (IT) in the root hair, and the induction of cell division in inner cortical cells of the root, leading to a nodule primordium formation. Reactive oxygen species (ROS) and nitric oxide (NO) have been detected in early steps of the interaction. ROS/NO are determinant signals to arbitrate the specificity of this mutualistic association and modifications in their content impair the development of the symbiotic association. The decrease of ROS level prevents root hair curling and ITs formation, and that of NO conducts to delayed nodule formation. In root hairs, NADPH oxidases were shown to produce ROS which could be involved in the hair tip growth process. The use of enzyme inhibitors suggests that nitrate reductase and NO synthase-like enzymes are the main route for NO production during the early steps of the interaction. Transcriptomic analyses point to the involvement of ROS and NO in the success of the infection process, the induction of early nodulin gene expression, and the repression of plant defense, thereby favoring the establishment of the symbiosis. The occurrence of an interplay between ROS and NO was further supported by the finding of both S-sulfenylated and S-nitrosylated proteins during early symbiotic interaction, linking ROS/NO production to a redox-based regulation of the symbiotic process.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Interactive role of nitric oxide and reactive oxygen species in neutrophil endothelial cell interaction.
    Kausalya, S
    Nath, J
    FASEB JOURNAL, 1997, 11 (03): : 1953 - 1953
  • [22] Role of reactive species and antioxidants in the legume - Rhizobium symbiosis.
    Puppo, A.
    Pauly, N.
    Pucciariello, C.
    Mandon, K.
    Innocenti, G.
    Jamet, A.
    Baudouin, E.
    Herouart, D.
    Frendo, P.
    FREE RADICAL RESEARCH, 2006, 40 : S43 - S43
  • [23] Nitric oxide and reactive oxygen species in plant biotic interactions
    Scheler, Claudia
    Durner, Joerg
    Astier, Jeremy
    CURRENT OPINION IN PLANT BIOLOGY, 2013, 16 (04) : 534 - 539
  • [24] Nitric oxide, reactive oxygen species, and skeletal muscle contraction
    Reid, MB
    MEDICINE AND SCIENCE IN SPORTS AND EXERCISE, 2001, 33 (03): : 371 - 376
  • [25] Reactive oxygen species and nitric oxide in myocardial ischemia and reperfusion
    B.F. Becker
    C. Kupatt
    P. Massoudy
    S. Zahler
    Zeitschrift für Kardiologie, 2000, 89 (Suppl 9): : IX88 - IX91
  • [26] Refined analysis of early symbiotic steps of the Rhizobium-Medicago interaction in relationship with microtubular cytoskeleton rearrangements
    Timmers, ACJ
    Auriac, MC
    Truchet, G
    DEVELOPMENT, 1999, 126 (16): : 3617 - 3628
  • [27] Nitric oxide and reactive oxygen species in Parkinson's disease
    Tieu, K
    Ischiropoulos, H
    Przedborski, S
    IUBMB LIFE, 2003, 55 (06) : 329 - 335
  • [28] Reactive oxygen species, antioxidant systems and nitric oxide in peroxisomes
    del Río, LA
    Corpas, FJ
    Sandalio, LM
    Palma, JM
    Gómez, M
    Barroso, JB
    JOURNAL OF EXPERIMENTAL BOTANY, 2002, 53 (372) : 1255 - 1272
  • [29] Reactive oxygen species and nitric oxide signaling in bystander cells
    Jella, Kishore Kumar
    Moriarty, Roisin
    McClean, Brendan
    Byrne, Hugh J.
    Lyng, Fiona M.
    PLOS ONE, 2018, 13 (04):
  • [30] Measurement of Nitric Oxide and Reactive Oxygen Species in the Vascular Wall
    Rodriguez-Rodriguez, Rosalia
    Simonsen, Ulf
    CURRENT ANALYTICAL CHEMISTRY, 2012, 8 (04) : 485 - 494