Planar Hall effect with sixfold oscillations in a Dirac antiperovskite

被引:19
作者
Huang, D. [1 ]
Nakamura, H. [2 ]
Takagi, H. [1 ,3 ,4 ]
机构
[1] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[2] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[3] Univ Stuttgart, Inst Funct Matter & Quantum Technol, D-70569 Stuttgart, Germany
[4] Univ Tokyo, Dept Phys, Tokyo 1130033, Japan
来源
PHYSICAL REVIEW RESEARCH | 2021年 / 3卷 / 01期
关键词
MAGNETORESISTANCE;
D O I
10.1103/PhysRevResearch.3.013268
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The planar Hall effect (PHE), wherein a rotating magnetic field in the plane of a sample induces oscillating transverse voltage, has recently garnered attention in a wide range of topological metals and insulators. The observed twofold oscillations in rho(yx) as the magnetic field completes one rotation are the result of chiral, orbital, and/or spin effects. The antiperovskites A(3)BO (A = Ca, Sr, Ba; B = Sn, Pb) are topological crystalline insulators whose low-energy excitations are described by a generalized Dirac equation for fermions with total angular momentum J = 3/2. We report unusual sixfold oscillations in the PHE of Sr3SnO, which persisted nearly up to room temperature. Multiple harmonics (twofold, fourfold, and sixfold), which exhibited distinct field and temperature dependencies, were detected in rho(xx) and rho(yx). These observations are more diverse than those in other Dirac and Weyl semimetals and point to a richer interplay of microscopic processes underlying the PHE in the antiperovskites.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Giant planar Hall effect in the Dirac semimetal ZrTe5-δ
    Li, P.
    Zhang, C. H.
    Zhang, J. W.
    Wen, Y.
    Zhang, X. X.
    PHYSICAL REVIEW B, 2018, 98 (12)
  • [2] Shubnikov-de Haas oscillations and planar Hall effect in HfTe2
    Li, Qixuan
    Jin, Gangjian
    Tang, Nannan
    Wang, Bin
    Shen, Bing
    Guo, Donghui
    Zhong, Dingyong
    Zuo, Huakun
    Wang, Huichao
    PHYSICAL REVIEW B, 2023, 108 (23)
  • [3] Planar hall effect of GaMnAs
    Kim, KH
    Lee, KJ
    Kim, DJ
    Kim, HJ
    Ihm, YE
    DESIGNING, PROCESSING AND PROPERTIES OF ADVANCED ENGINEERING MATERIALS, PTS 1 AND 2, 2004, 449-4 : 1069 - 1072
  • [4] Nonlinear Planar Hall Effect
    He, Pan
    Zhang, Steven S-L
    Zhu, Dapeng
    Shi, Shuyuan
    Heinonen, Olle G.
    Vignale, Giovanni
    Yang, Hyunsoo
    PHYSICAL REVIEW LETTERS, 2019, 123 (01)
  • [5] Nontopological origin of the planar Hall effect in the type-II Dirac semimetal NiTe2
    Liu, Qianqian
    Fei, Fucong
    Chen, Bo
    Bo, Xiangyan
    Wei, Boyuan
    Zhang, Shuai
    Zhang, Minhao
    Xie, Faji
    Naveed, Muhammad
    Wan, Xiangang
    Song, Fengqi
    Wang, Baigeng
    PHYSICAL REVIEW B, 2019, 99 (15)
  • [6] Planar Hall effect in the Weyl semimetal GdPtBi
    Kumar, Nitesh
    Guin, Satya N.
    Felser, Claudia
    Shekhar, Chandra
    PHYSICAL REVIEW B, 2018, 98 (04)
  • [7] Planar Hall effect in Hall sensors made from InP/InGaAs heterostructure
    Morvic, M
    Betko, J
    SENSORS AND ACTUATORS A-PHYSICAL, 2005, 120 (01) : 130 - 133
  • [8] A hysteresis model for planar Hall effect in thin films
    Chang, CR
    IEEE TRANSACTIONS ON MAGNETICS, 2000, 36 (04) : 1214 - 1217
  • [9] Recent progress on the planar Hall effect in quantum materials
    Zhong, Jingyuan
    Zhuang, Jincheng
    Du, Yi
    CHINESE PHYSICS B, 2023, 32 (04)
  • [10] Magnetic sensors for nanotesla detection using planar Hall effect
    VanDau, FN
    Schuhl, A
    Childress, JR
    Sussiau, M
    SENSORS AND ACTUATORS A-PHYSICAL, 1996, 53 (1-3) : 256 - 260