ON SLANT SUBMANIFOLDS OF NEUTRAL KAEHLER MANIFOLDS

被引:18
作者
Arslan, K. [1 ]
Carriazo, A. [2 ]
Chen, B. -Y. [3 ]
Murathan, C. [1 ]
机构
[1] Uludag Univ, Dept Math, TR-16059 Bursa, Turkey
[2] Univ Seville, Dept Geometry & Topol, E-41080 Seville, Spain
[3] Michigan State Univ, Dept Math, E Lansing, MI 48824 USA
来源
TAIWANESE JOURNAL OF MATHEMATICS | 2010年 / 14卷 / 02期
关键词
Slant submanifold; Neutral Kaehler manifold; Neutral complex space form; Minimal surface; Lorentzian complex plane; COMPLEX-SPACE FORMS; MINIMAL-SURFACES; S-MANIFOLDS; IMMERSIONS;
D O I
10.11650/twjm/1500405807
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An indefinite Riemannian manifold is called neutral it its index is equal to one half of its dimension and an indefinite Kaehler manifold is called neutral Kaehler if its complex index is equal to the half of its complex dimension. In the first part of this article, we extend the notion of slant surfaces in Lorentzian Kaehler surfaces to slant submanifolds in neutral Kaehler manifolds; moreover, we characterize slant submanifolds with parallel canonical structures. By applying the results obtained in the first part we completely classify slant surfaces with parallel mean curvature vector and minimal slant surfaces in the Lorentzian complex plane in the second part of this article.
引用
收藏
页码:561 / 584
页数:24
相关论文
共 19 条
[1]  
BARROS M, 1982, MATH ANN, V261, P44
[2]   Slant submanifolds in Sasakian manifolds [J].
Cabrerizo, JL ;
Carriazo, A ;
Fernández, LM ;
Fernández, M .
GLASGOW MATHEMATICAL JOURNAL, 2000, 42 :125-138
[3]  
Carriazo A, 2005, REV MAT IBEROAM, V21, P47
[4]   Some slant submanifolds of S-manifolds [J].
Carriazo, A ;
Fernández, LM ;
Hans-Uber, MB .
ACTA MATHEMATICA HUNGARICA, 2005, 107 (04) :267-285
[5]   CLASSIFICATION OF QUASI-MINIMAL SLANT SURFACES IN LORENTZIAN COMPLEX SPACE FORMS [J].
Chen, B. Y. ;
Mihai, I. .
ACTA MATHEMATICA HUNGARICA, 2009, 122 (04) :307-328
[6]  
Chen B. - Y., 1990, GEOMETRY SLANT SUBMA
[7]  
Chen B.-Y., 1973, PURE APPL MATH, V22
[8]  
Chen B. Y., 2001, Results Math., V39, P18, DOI [10.1007/BF03322673, DOI 10.1007/BF03322673]
[9]   Lagrangian minimal surfaces in Lorentzian complex plane [J].
Chen, Bang-Yen .
ARCHIV DER MATHEMATIK, 2008, 91 (04) :366-371
[10]  
Chen BY, 2008, PUBL MATH-DEBRECEN, V73, P233