Ovoidal blocking sets and maximal partial ovoids of Hermitian varieties

被引:1
作者
Marino, G. [1 ]
Polverino, O. [1 ]
机构
[1] Seconda Univ Napoli, Dip Matemat, I-81100 Caserta, Italy
关键词
Spread; Blocking set; Hermitian variety; Ovoid; Q(N));
D O I
10.1007/s10623-010-9390-z
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In Mazzocca et al. (Des. Codes Cryptogr. 44:97-113, 2007), large minimal blocking sets in PG(3, q (2)) and PG(4, q (2)) have been constructed starting from ovoids of PG(3, q), Q(4, q) and Q(6, q). Some of these can be embedded in a Hermitian variety as maximal partial ovoids. In this paper, the geometric conditions assuring these embeddings are established.
引用
收藏
页码:115 / 130
页数:16
相关论文
共 17 条
  • [1] Andre J., 1954, MATH Z, V60, P156
  • [2] On ovoids of parabolic quadrics
    Ball, S
    Govaerts, P
    Storme, L
    [J]. DESIGNS CODES AND CRYPTOGRAPHY, 2006, 38 (01) : 131 - 145
  • [3] On ovoids of O(5,q)
    Ball, S
    [J]. ADVANCES IN GEOMETRY, 2004, 4 (01) : 1 - 7
  • [4] Barlotti A., 1974, Abh. Math. Semin. Univ. Hamb., V40, P231
  • [5] Bruck RH., 1964, J ALGEBRA, V1, P85
  • [6] HYPERPLANE COVERINGS AND BLOCKING SETS
    BRUEN, AA
    THAS, JA
    [J]. MATHEMATISCHE ZEITSCHRIFT, 1982, 181 (03) : 407 - 409
  • [7] Buekenhout F., 1976, Geom. Dedicata, V5, P189
  • [8] De Beule J., 2008, SERDICA MATH J, V34, P689
  • [9] OVOIDS AND TRANSLATION-PLANES
    KANTOR, WM
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1982, 34 (05): : 1195 - 1207
  • [10] Blocking sets and semifields
    Lunardon, Gughelmo
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2006, 113 (06) : 1172 - 1188