The construction of exponentially fitted two-derivative Runge-Kutta (EFTDRK) methods for the numerical solution of first-order differential equations is investigated. The revised EFTDRK methods proposed, with equation-dependent coefficients, take into consideration the errors produced in the internal stages to the update. The local truncation errors and stability of the new methods are analyzed. The numerical results are reported to show the accuracy of the new methods.
机构:
Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, ItalyUniv Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
D' Ambrosio, R.
论文数: 引用数:
h-index:
机构:
Ferro, M.
Paternoster, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, ItalyUniv Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
机构:
Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, ItalyUniv Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy
D' Ambrosio, R.
论文数: 引用数:
h-index:
机构:
Ferro, M.
Paternoster, B.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, ItalyUniv Salerno, Dipartimento Matemat & Informat, I-84084 Fisciano, SA, Italy