Room Temperature Metallic Conductivity in a Metal-Organic Framework Induced by Oxidation

被引:107
作者
Clough, Andrew J. [1 ]
Orchanian, Nicholas M. [1 ]
Skelton, Jonathan M. [2 ]
Neer, Abbey J. [1 ]
Howard, Sebastian A. [3 ]
Downes, Courtney A. [1 ]
Piper, Louis F. J. [3 ,4 ]
Walsh, Aron [5 ,6 ]
Melot, Brent C. [1 ]
Marinescu, Smaranda C. [1 ]
机构
[1] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
[2] Univ Manchester, Sch Chem, Manchester M13 9PL, Lancs, England
[3] Binghamton Univ, Dept Phys Appl Phys & Astron, Binghamton, NY 13902 USA
[4] Binghamton Univ, Mat Sci & Engn, Binghamton, NY 13902 USA
[5] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[6] Yonsei Univ, Dept Mat Sci & Engn, Seoul 03722, South Korea
基金
英国工程与自然科学研究理事会;
关键词
TUNABLE ELECTRICAL-CONDUCTIVITY; ELECTRONIC CONDUCTIVITY; HYDROGEN EVOLUTION; NANOSHEET; SPECTROSCOPY; CHALLENGES; CHEMISTRY; DEVICES; ROADMAP; ANALOG;
D O I
10.1021/jacs.9b06898
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Metal-organic frameworks (MOFs) containing redox active linkers have led to hybrid compounds exhibiting high electrical conductivity, which enables their use in applications in electronics and electrocatalysis. While many computational studies predict two-dimensional (2D) MOFs to be metallic, the majority of experiments show decreasing conductivity on cooling, indicative of a gap in the electronic band structure. To date, only a handful of MOFs have been reported that exhibit increased electrical conductivity upon cooling indicative of a metallic character, which highlights the need for a better understanding of the origin of the conductivity. A 2D MOF containing iron bis(dithiolene) motifs was recently reported to exhibit semiconducting behavior with record carrier mobility. Herein, we report that high crystallinity and the elimination of guest species results in an iron 2,3,6,7,10,11-tripheylene-hexathiolate (THT) MOF, FeTHT, exhibiting a complex transition from semiconducting to metallic upon cooling, similar to what was shown for the analogous CoTHT. Remarkably, exposing the FeTHT to air significantly influences the semiconducting-to-metallic transition temperature (100 to 300 K) and ultimately results in a material showing metallic-like character at, and above, room temperature. This study indicates these materials can tolerate a substantial degree of doping that ultimately results in charge delocalization and metallic-like conductivity, an important step toward enabling their use in chemiresistive sensing and optoelectronics.
引用
收藏
页码:16323 / 16330
页数:8
相关论文
共 75 条
  • [1] Crystal engineering, structure-function relationships, and the future of metal-organic frameworks
    Allendorf, Mark D.
    Stavila, Vitalie
    [J]. CRYSTENGCOMM, 2015, 17 (02): : 229 - 246
  • [2] A Roadmap to Implementing Metal-Organic Frameworks in Electronic Devices: Challenges and Critical Directions
    Allendorf, Mark D.
    Schwartzberg, Adam
    Stavila, Vitalie
    Talin, A. Alec
    [J]. CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (41) : 11372 - 11388
  • [3] Electron delocalization and charge mobility as a function of reduction in a metal-organic framework
    Aubrey, Michael L.
    Wiers, Brian M.
    Andrews, Sean C.
    Sakurai, Tsuneaki
    Reyes-Lillo, Sebastian E.
    Hamed, Samia M.
    Yu, Chung-Jui
    Darago, Lucy E.
    Mason, Jarad A.
    Baeg, Jin-Ook
    Grandjean, Fernande
    Long, Gary J.
    Seki, Shu
    Neaton, Jeffrey B.
    Yang, Peidong
    Long, Jeffrey R.
    [J]. NATURE MATERIALS, 2018, 17 (07) : 625 - +
  • [4] Tunable electrical conductivity in oriented thin films of tetrathiafulvalene-based covalent organic framework
    Cai, Song-Liang
    Zhang, Yue-Biao
    Pun, Andrew B.
    He, Bo
    Yang, Jinhui
    Toma, Francesca M.
    Sharp, Ian D.
    Yaghi, Omar M.
    Fan, Jun
    Zheng, Sheng-Run
    Zhang, Wei-Guang
    Liu, Yi
    [J]. CHEMICAL SCIENCE, 2014, 5 (12) : 4693 - 4700
  • [5] Redox-active metal-organic frameworks for energy conversion and storage
    Calbo, Joaquin
    Golomb, Matthias J.
    Walsh, Aron
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (28) : 16571 - 16597
  • [6] Chemiresistive Sensor Arrays from Conductive 2D Metal-Organic Frameworks
    Campbell, Michael G.
    Liu, Sophie F.
    Swager, Timothy M.
    Dinca, Mircea
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (43) : 13780 - 13783
  • [7] Comparative Studies of Oxidation Processes on Group 10 Metals Dithiolene Derivatives in the Formation of Coordination Polymers
    Castillo, Oscar
    Delgado, Esther
    Gomez-Garcia, Carlos J.
    Hernandez, Diego
    Hernandez, Elisa
    Herrasti, Pilar
    Martin, Avelino
    Zamora, Felix
    [J]. CRYSTAL GROWTH & DESIGN, 2018, 18 (04) : 2486 - 2494
  • [8] X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces
    Castner, DG
    Hinds, K
    Grainger, DW
    [J]. LANGMUIR, 1996, 12 (21) : 5083 - 5086
  • [9] Highly Conductive 2D Metal-Organic Framework Thin Film Fabricated by Liquid-Liquid Interfacial Reaction Using One-Pot-Synthesized Benzenehexathiol
    Chen, Iu-Fan
    Lu, Chun-Fu
    Su, Wei-Fang
    [J]. LANGMUIR, 2018, 34 (51) : 15754 - 15762
  • [10] Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution
    Chen, Shuang
    Dai, Jun
    Zeng, Xiao Cheng
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (08) : 5954 - 5958