Boundary Criterion for Integral Operators

被引:15
作者
Kal'menov, T. Sh. [1 ]
Otelbaev, M. [1 ]
机构
[1] Inst Math & Math Modeling, Ul Shevchenko 28, Alma Ata 050010, Kazakhstan
关键词
Integral Operator; Maximal Operator; DOKLADY Mathematic; Inverse Operator; Minimal Operator;
D O I
10.1134/S1064562416010208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integral operators of the form for the case of a finite domain Omega aS, R (n) with smooth boundary a,Omega are considered. Conditions on the real kernel K(x, t) of an integral operator under which this operator satisfies a well-defined boundary condition for the corresponding differential equation are found. The application of the results is demonstrated on the example of a Sturm-Liouville equation, for which the derivation of the general form of well-posed boundary value problems is presented.
引用
收藏
页码:58 / 61
页数:4
相关论文
共 7 条
[1]   On a nonlocal boundary value problem for the multidimensional heat equation in a noncylindrical domain [J].
Kal'menov, T. Sh ;
Tokmagambetov, N. E. .
SIBERIAN MATHEMATICAL JOURNAL, 2013, 54 (06) :1023-1028
[2]   Boundary conditions for the volume potential for the polyharmonic equation [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DIFFERENTIAL EQUATIONS, 2012, 48 (04) :604-608
[3]  
Kal'menov TS, 2011, OPER THEORY ADV APPL, V216, P187
[4]   To spectral problems for the volume potential [J].
Kal'menov, T. Sh. ;
Suragan, D. .
DOKLADY MATHEMATICS, 2009, 80 (02) :646-649
[5]  
Kalmenov T. Sh., 2012, Zh. Vychisl. Mat. Mat. Fiz., V52, P1063
[6]  
Otelbaev M., 1983, DOKL AKAD NAUK, V271, P1307
[7]  
Vishik M. I., 1952, Trudy Moskov. Mat. Obshch., V1, P187