Hepatic gene therapy rescues high-fat diet responses in circadian Clock mutant mice

被引:27
作者
Meyer-Kovac, Judit [1 ]
Kolbe, Isa [2 ]
Ehrhardt, Lea [1 ]
Leliavski, Alexei [2 ,3 ]
Husse, Jana [1 ]
Salinas, Gabriela [4 ]
Lingner, Thomas [4 ]
Tsang, Anthony H. [1 ,2 ]
Barclay, Johanna L. [5 ]
Oster, Henrik [1 ,2 ]
机构
[1] Max Planck Inst Biophys Chem, Circadian Rhythms Grp, Gottingen, Germany
[2] Univ Lubeck, Chronophysiol Grp, Dept Med 1, Ratzeburger Allee 160, D-23538 Lubeck, Germany
[3] Univ Lubeck, Inst Nutr Med, Lubeck, Germany
[4] Univ Med Ctr, Microarray & Deep Sequencing Core Facil, Inst Dev Biochem, Gottingen, Germany
[5] Univ Queensland, Mater Res Inst, Brisbane, Qld, Australia
来源
MOLECULAR METABOLISM | 2017年 / 6卷 / 06期
关键词
Circadian clock; Clock gene; High-fat diet; Liver; Transcription; Gene therapy; SHIFT WORK; ENERGY-EXPENDITURE; METABOLIC SYNDROME; SUPRACHIASMATIC NUCLEUS; INSULIN SENSITIVITY; NERVOUS-SYSTEM; ADIPOSE-TISSUE; DEFICIENT MICE; OBESE MICE; MOUSE;
D O I
10.1016/j.molmet.2017.03.008
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective: Circadian Clock gene mutant mice show dampened 24-h feeding rhythms and an increased sensitivity to high-fat diet (HFD) feeding. Restricting HFD access to the dark phase counteracts its obesogenic effect in wild-type mice. The extent to which altered feeding rhythms are causative for the obesogenic phenotype of Clock mutant mice, however, remains unknown. Methods: Metabolic parameters of wild-type (WT) and Clock(Delta 19) mutant mice (MT) were investigated under ad libitum and nighttime restricted HFD feeding. Liver circadian clock function was partially rescued by hydrodynamic tail vein delivery of WT-Clock DNA vectors in mutant mice and transcriptional, metabolic, endocrine and behavioral rhythms studied. Results: Nighttime-restricted feeding restored food intake, but not body weight regulation in MT mice under HFD, suggesting Clock-dependent metabolic dysregulation downstream of circadian appetite control. Liver-directed Clock gene therapy partially restored liver circadian oscillator function and transcriptome regulation without affecting centrally controlled circadian behaviors. Under HFD, MT mice with partially restored liver clock function (MT-LR) showed normalized body weight gain, rescued 24-h food intake rhythms, and WT-like energy expenditure. This was associated with decreased nighttime leptin and daytime ghrelin levels, reduced hepatic lipid accumulation, and improved glucose tolerance. Transcriptome analysis revealed that hepatic Clock rescue in MT mice affected a range of metabolic pathways. Conclusion: Liver Clock gene therapy improves resistance against HFD-induced metabolic impairments in mice with circadian clock disruption. Restoring or stabilizing liver clock function might be a promising target for therapeutic interventions in obesity and metabolic disorders. (C) 2017 The Authors. Published by Elsevier GmbH.
引用
收藏
页码:512 / 523
页数:12
相关论文
共 69 条
[1]   Circadian Clocks and Feeding Time Regulate the Oscillations and Levels of Hepatic Triglycerides [J].
Adamovich, Yaarit ;
Rousso-Noori, Liat ;
Zwighaft, Ziv ;
Neufeld-Cohen, Adi ;
Golik, Marina ;
Kraut-Cohen, Judith ;
Wang, Miao ;
Han, Xianlin ;
Asher, Gad .
CELL METABOLISM, 2014, 19 (02) :319-330
[2]   Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus [J].
Akhtar, RA ;
Reddy, AB ;
Maywood, ES ;
Clayton, JD ;
King, VM ;
Smith, AG ;
Gant, TW ;
Hastings, MH ;
Kyriacou, CP .
CURRENT BIOLOGY, 2002, 12 (07) :540-550
[3]   CNS control of glucose metabolism: response to environmental challenges [J].
Arble, Deanna M. ;
Sandoval, Darleen A. .
FRONTIERS IN NEUROSCIENCE, 2013, 7
[4]   Insulin action in the double incretin receptor knockout mouse [J].
Ayala, Julio E. ;
Bracy, Deanna P. ;
Hansotia, Tanya ;
Flock, Grace ;
Seino, Yutaka ;
Wasserman, David H. ;
Drucker, Daniel J. .
DIABETES, 2008, 57 (02) :288-297
[5]   High-fat diet-induced hyperinsulinemia and tissue-specific insulin resistance in Cry-deficient mice [J].
Barclay, Johanna L. ;
Shostak, Anton ;
Leliavski, Alexei ;
Tsang, Anthony H. ;
Joehren, Olaf ;
Mueller-Fielitz, Helge ;
Landgraf, Dominic ;
Naujokat, Nadine ;
van der Horst, Gijsbertus T. J. ;
Oster, Henrik .
AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2013, 304 (10) :E1053-E1063
[6]   Circadian Desynchrony Promotes Metabolic Disruption in a Mouse Model of Shiftwork [J].
Barclay, Johanna L. ;
Husse, Jana ;
Bode, Brid ;
Naujokat, Nadine ;
Meyer-Kovac, Judit ;
Schmid, Sebastian M. ;
Lehnert, Hendrik ;
Oster, Henrik .
PLOS ONE, 2012, 7 (05)
[7]   Circadian Integration of Metabolism and Energetics [J].
Bass, Joseph ;
Takahashi, Joseph S. .
SCIENCE, 2010, 330 (6009) :1349-1354
[8]   FGF21 regulates metabolism and circadian behavior by acting on the nervous system [J].
Bookout, Angie L. ;
de Groot, Marleen H. M. ;
Owen, Bryn M. ;
Lee, Syann ;
Gautron, Laurent ;
Lawrence, Heather L. ;
Ding, Xunshan ;
Elmquist, Joel K. ;
Takahashi, Joseph S. ;
Mangelsdorf, David J. ;
Kliewer, Steven A. .
NATURE MEDICINE, 2013, 19 (09) :1147-1152
[9]   Liver-derived ketone bodies are necessary for food anticipation [J].
Chavan, Rohit ;
Feillet, Celine ;
Costa, Sara S. Fonseca ;
Delorme, James E. ;
Okabe, Takashi ;
Ripperger, Juergen A. ;
Albrecht, Urs .
NATURE COMMUNICATIONS, 2016, 7
[10]   PPARs Integrate the Mammalian Clock and Energy Metabolism [J].
Chen, Lihong ;
Yang, Guangrui .
PPAR RESEARCH, 2014, 2014