Spectral reflectance recovery using optimal illuminations

被引:15
作者
Fu, Ying [1 ]
Zou, Yunhao [1 ]
Zheng, Yinqiang [2 ]
Huang, Hua [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Intelligent Informat Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Natl Inst Informat, Tokyo 1018430, Japan
基金
中国国家自然科学基金;
关键词
IMAGING SPECTROMETER; SYSTEM;
D O I
10.1364/OE.27.030502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spectral reflectance of objects provides intrinsic information on material properties that have been proven beneficial in a diverse range of applications, e.g., remote sensing, agriculture and diagnostic medicine, to name a few. Existing methods for the spectral reflectance recovery from RGB or monochromatic images either ignore the effect from the illumination or implement/optimize the illumination under the linear representation assumption of the spectral reflectance. In this paper, we present a simple and efficient convolutional neural network (CNN)-based spectral reflectance recovery method with optimal illuminations. Specifically, we design illumination optimization layer to optimally multiplex illumination spectra in a given dataset or to design the optimal one under physical restrictions. Meanwhile, we develop the nonlinear representation for spectral reflectance in a data-driven way and jointly optimize illuminations under this representation in a CNN-based end-to-end architecture. Experimental results on both synthetic and real data show that our method outperforms the state-of-the-arts and verifies the advantages of deeply optimal illumination and nonlinear representation of the spectral reflectance. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:30502 / 30516
页数:15
相关论文
共 40 条
[21]   THE SPECTRAL IMAGE-PROCESSING SYSTEM (SIPS) - INTERACTIVE VISUALIZATION AND ANALYSIS OF IMAGING SPECTROMETER DATA [J].
KRUSE, FA ;
LEFKOFF, AB ;
BOARDMAN, JW ;
HEIDEBRECHT, KB ;
SHAPIRO, AT ;
BARLOON, PJ ;
GOETZ, AFH .
REMOTE SENSING OF ENVIRONMENT, 1993, 44 (2-3) :145-163
[22]  
Lam A, 2013, ADV OTO-RHINO-LARYNG, V74, P1, DOI 10.1159/000342263
[23]   Spectral Imaging Using Basis Lights [J].
Lam, Antony ;
Subpa-Asa, Art ;
Sato, Imari ;
Okabe, Takahiro ;
Sato, Yoichi .
PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
[24]   A spectral and spatial source separation of multispectral images [J].
Loghmari, Mohamed Anis ;
Naceur, Mohamed Saber ;
Boussema, Mohamed Rached .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2006, 44 (12) :3659-3673
[25]  
Nair V., 2010, P 27 INT C MACH LEAR, P807
[26]   Fast feature selection algorithm for poultry skin tumor detection in hyperspectral data [J].
Nakariyakul, Songyot ;
Casasent, David P. .
JOURNAL OF FOOD ENGINEERING, 2009, 94 (3-4) :358-365
[27]  
Nguyen RMH, 2014, LECT NOTES COMPUT SC, V8695, P186, DOI 10.1007/978-3-319-10584-0_13
[28]   Deeply Learned Filter Response Functions for Hyperspectral Reconstruction [J].
Nie, Shijie ;
Gu, Lin ;
Zheng, Yinqiang ;
Lam, Antony ;
Ono, Nobutaka ;
Sato, Imari .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :4767-4776
[29]  
Oh S. Wug, 2016, P C COMP VIS PATT RE
[30]  
Park IC, 2007, PR IEEE COMP DESIGN, P1, DOI 10.1109/ICCD.2007.4601872