Spectral reflectance recovery using optimal illuminations

被引:15
作者
Fu, Ying [1 ]
Zou, Yunhao [1 ]
Zheng, Yinqiang [2 ]
Huang, Hua [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Intelligent Informat Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Natl Inst Informat, Tokyo 1018430, Japan
基金
中国国家自然科学基金;
关键词
IMAGING SPECTROMETER; SYSTEM;
D O I
10.1364/OE.27.030502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spectral reflectance of objects provides intrinsic information on material properties that have been proven beneficial in a diverse range of applications, e.g., remote sensing, agriculture and diagnostic medicine, to name a few. Existing methods for the spectral reflectance recovery from RGB or monochromatic images either ignore the effect from the illumination or implement/optimize the illumination under the linear representation assumption of the spectral reflectance. In this paper, we present a simple and efficient convolutional neural network (CNN)-based spectral reflectance recovery method with optimal illuminations. Specifically, we design illumination optimization layer to optimally multiplex illumination spectra in a given dataset or to design the optimal one under physical restrictions. Meanwhile, we develop the nonlinear representation for spectral reflectance in a data-driven way and jointly optimize illuminations under this representation in a CNN-based end-to-end architecture. Experimental results on both synthetic and real data show that our method outperforms the state-of-the-arts and verifies the advantages of deeply optimal illumination and nonlinear representation of the spectral reflectance. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:30502 / 30516
页数:15
相关论文
共 40 条
[11]   Spectral Reflectance Recovery From a Single RGB Image [J].
Fu, Ying ;
Zheng, Yongrong ;
Zhang, Lin ;
Huang, Hua .
IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2018, 4 (03) :382-394
[12]   Snapshot Image Mapping Spectrometer (IMS) with high sampling density for hyperspectral microscopy [J].
Gao, Liang ;
Kester, Robert T. ;
Hagen, Nathan ;
Tkaczyk, Tomasz S. .
OPTICS EXPRESS, 2010, 18 (14) :14330-14344
[13]   Development of four-dimensional imaging spectrometers (4D-IS) - art. no. 63020M [J].
Gat, Nahum ;
Scriven, Gordon ;
Garman, John ;
Li, Ming De ;
Zhang, Jingyi .
Imaging Spectrometry XI, 2006, 6302 :M3020-M3020
[14]   Propagation of sensor noise in oceanic hyperspectral remote sensing [J].
Gillis, David B. ;
Bowles, Jeffrey H. ;
Montes, Marcos J. ;
Moses, Wesley J. .
OPTICS EXPRESS, 2018, 26 (18) :A818-A831
[15]   Generalization of the Lyot filter and its application to snapshot spectral imaging [J].
Gorman, Alistair ;
Fletcher-Holmes, David William ;
Harvey, Andrew Robert .
OPTICS EXPRESS, 2010, 18 (06) :5602-5608
[16]   Fast Spectral Reflectance Recovery Using DLP Projector [J].
Han, Shuai ;
Sato, Imari ;
Okabe, Takahiro ;
Sato, Yoichi .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 110 (02) :172-184
[17]  
He K, 2015, INT CONF WIRE COMMUN
[18]   From RGB to Spectrum for Natural Scenes via Manifold-based Mapping [J].
Jia, Yan ;
Zheng, Yinqiang ;
Gu, Lin ;
Subpa-Asa, Art ;
Lam, Antony ;
Sato, Yoichi ;
Sato, Imari .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :4715-4723
[19]  
Kingma DP, 2014, ARXIV
[20]  
Kitahara Masahiro, 2015, 10th International Conference on Computer Vision Theory and Applications (VISAPP 2015). Proceedings, P303