Spectral reflectance recovery using optimal illuminations

被引:15
作者
Fu, Ying [1 ]
Zou, Yunhao [1 ]
Zheng, Yinqiang [2 ]
Huang, Hua [1 ]
机构
[1] Beijing Inst Technol, Beijing Key Lab Intelligent Informat Technol, Sch Comp Sci & Technol, Beijing 100081, Peoples R China
[2] Natl Inst Informat, Tokyo 1018430, Japan
基金
中国国家自然科学基金;
关键词
IMAGING SPECTROMETER; SYSTEM;
D O I
10.1364/OE.27.030502
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The spectral reflectance of objects provides intrinsic information on material properties that have been proven beneficial in a diverse range of applications, e.g., remote sensing, agriculture and diagnostic medicine, to name a few. Existing methods for the spectral reflectance recovery from RGB or monochromatic images either ignore the effect from the illumination or implement/optimize the illumination under the linear representation assumption of the spectral reflectance. In this paper, we present a simple and efficient convolutional neural network (CNN)-based spectral reflectance recovery method with optimal illuminations. Specifically, we design illumination optimization layer to optimally multiplex illumination spectra in a given dataset or to design the optimal one under physical restrictions. Meanwhile, we develop the nonlinear representation for spectral reflectance in a data-driven way and jointly optimize illuminations under this representation in a CNN-based end-to-end architecture. Experimental results on both synthetic and real data show that our method outperforms the state-of-the-arts and verifies the advantages of deeply optimal illumination and nonlinear representation of the spectral reflectance. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:30502 / 30516
页数:15
相关论文
共 40 条
[1]   Adversarial Networks for Spatial Context-Aware Spectral Image Reconstruction from RGB [J].
Alvarez-Gila, Aitor ;
van de Weijer, Joost ;
Garrote, Estibaliz .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :480-490
[2]  
[Anonymous], P SPIE
[3]   Sparse Recovery of Hyperspectral Signal from Natural RGB Images [J].
Arad, Boaz ;
Ben-Shahar, Ohad .
COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 :19-34
[4]  
BASEDOW RW, 1995, P SOC PHOTO-OPT INS, V2480, P258, DOI 10.1117/12.210881
[5]   Hyperspectral Remote Sensing Data Analysis and Future Challenges [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Camps-Valls, Gustavo ;
Scheunders, Paul ;
Nasrabadi, Nasser M. ;
Chanussot, Jocelyn .
IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2013, 1 (02) :6-36
[6]   Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network [J].
Cao, Xiangyong ;
Zhou, Feng ;
Xu, Lin ;
Meng, Deyu ;
Xu, Zongben ;
Paisley, John .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (05) :2354-2367
[7]  
Chalaabarti A., 2011, PROC CVPR IEEE, P193, DOI [DOI 10.1109/CVPR.2011.5995660, 10.1109/CVPR.2011.5995660]
[8]   Multi-Spectral Imaging by Optimized Wide Band Illumination [J].
Chi, Cui ;
Yoo, Hyunjin ;
Ben-Ezra, Moshe .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 86 (2-3) :140-151
[9]   Large-image-format computed tomography imaging spectrometer for fluorescence microscopy [J].
Ford, BK ;
Descour, MR ;
Lynch, RM .
OPTICS EXPRESS, 2001, 9 (09) :444-453
[10]  
Fu Y., 2018, P EUR C COMP VIS