Quasi-invariance for the pinned Brownian motion on a Lie group

被引:6
作者
Gordina, M [1 ]
机构
[1] Univ Connecticut, Dept Math, Storrs, CT 06269 USA
关键词
pinned Brownian motion; Lie group; quasi-invariance; Girsanov density;
D O I
10.1016/S0304-4149(02)00241-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give a new proof of the well-known fact that the pinned Wiener measure on a Lie group is quasi-invariant under right multiplication by finite energy paths. The main technique we use is the time reversal. This approach is different from what B. Driver used to prove quasi-invariance for the pinned Brownian motion on a compact Riemannian manifold. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:243 / 257
页数:15
相关论文
共 11 条
[1]  
Bismut J.-M., 1984, Progress in Mathematics, V45
[2]  
Da Prato G, 1992, STOCHASTIC EQUATIONS
[3]   ON THE KAKUTANI-ITO-SEGAL-GROSS AND SEGAL-BARGMANN-HALL ISOMORPHISMS [J].
DRIVER, BK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 133 (01) :69-128
[5]   Heat equation derivative formulas for vector bundles [J].
Driver, BK ;
Thalmaier, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 183 (01) :42-108
[6]   LOGARITHMIC SOBOLEV INEQUALITIES ON LOOP-GROUPS [J].
GROSS, L .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 102 (02) :268-313
[7]   A new form of the Segal-Bargmann transform for Lie groups of compact type [J].
Hall, BC .
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1999, 51 (04) :816-834
[8]   ON CONDITIONAL DIFFUSION-PROCESSES [J].
LYONS, TJ ;
ZHENG, WA .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :243-255
[9]   INTEGRATION ON LOOP-GROUPS .1. QUASI INVARIANT-MEASURES [J].
MALLIAVIN, MP ;
MALLIAVIN, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1990, 93 (01) :207-237
[10]  
McKean Jr H. P., 1969, PROBABILITY MATH STA, V5