SiO2 Hollow Nanosphere-Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life

被引:387
作者
Zhou, Dong [1 ,2 ,3 ]
Liu, Ruliang [1 ]
He, Yan-Bing [1 ]
Li, Fengyun [2 ,3 ,4 ]
Liu, Ming [1 ]
Li, Baohua [1 ]
Yang, Quan-Hong [1 ]
Cai, Qiang [2 ,3 ]
Kang, Feiyu [1 ,2 ,3 ]
机构
[1] Tsinghua Univ, Grad Sch Shenzhen, Natl Local Joint Engn Lab Carbon Funct Mat, Shenzhen 518055, Peoples R China
[2] Tsinghua Univ, Dept Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[3] Tsinghua Univ, Dept Mat Sci & Engn, Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[4] China Acad Engn Phys, Inst Mat, Mianyang 621900, Peoples R China
基金
中国国家自然科学基金;
关键词
POLYMER ELECTROLYTE; ELECTROCHEMICAL PROPERTIES; LIQUID ELECTROLYTES; HYBRID ELECTROLYTES; CURRENT COLLECTORS; ENERGY-STORAGE; PERFORMANCE; DEPOSITION; ANODES; LAYER;
D O I
10.1002/aenm.201502214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The low Coulombic efficiency and serious security issues of lithium (Li) metal anode caused by uncontrollable Li dendrite growth have permanently prevented its practical application. A novel SiO2 hollow nanosphere-based composite solid electrolyte (SiSE) for Li metal batteries is reported. This hierarchical electrolyte is fabricated via in situ polymerizing the tripropylene gycol diacrylate (TPGDA) monomer in the presence of liquid electrolyte, which is absorbed in a SiO2 hollow nanosphere layer. The polymerized TPGDA framework keeps the prepared SiSE in a quasi-solid state without safety risks caused by electrolyte leakage, meanwhile the SiO2 layer not only acts as a mechanics-strong separator but also provides the SiSE with high room-temperature ionic conductivity (1.74 x 10(-3) S cm(-1)) due to the high pore volume (1.49 cm(3) g(-1)) and large liquid electrolyte uptake of SiO2 hollow nanospheres. When the SiSE is in situ fabricated on the cathode and applied to LiFePO4/SiSE/Li batteries, the obtained cells show a significant improvement in cycling stability, mainly attributed to the stable electrode/electrolyte interface and remarkable suppression for Li dendrite growth by the SiSE. This work can extend the application of hollow nanooxide and enable a safe, efficient operation of Li anode in next generation energy storage systems.
引用
收藏
页数:10
相关论文
共 68 条
  • [1] Plastic crystal-lithium batteries: An effective ambient temperature all-solid-state power source
    Abouimrane, A
    Abu-Lebdeb, Y
    Alarco, PJ
    Armand, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2004, 151 (07) : A1028 - A1031
  • [2] Highly conductive PEO-like polymer electrolytes
    Abraham, KM
    Jiang, Z
    Carroll, B
    [J]. CHEMISTRY OF MATERIALS, 1997, 9 (09) : 1978 - 1988
  • [3] Flexible Ion-Conducting Composite Membranes for Lithium Batteries
    Aetukuri, Nagaphani B.
    Kitajima, Shintaro
    Jung, Edward
    Thompson, Leslie E.
    Virwani, Kumar
    Reich, Maria-Louisa
    Kunze, Miriam
    Schneider, Meike
    Schmidbauer, Wolfgang
    Wilcke, Winfried W.
    Bethune, Donald S.
    Scott, J. Campbell
    Miller, Robert D.
    Kim, Ho-Cheol
    [J]. ADVANCED ENERGY MATERIALS, 2015, 5 (14)
  • [4] KINETICS AND STABILITY OF THE LITHIUM ELECTRODE IN POLY(METHYLMETHACRYLATE)-BASED GEL ELECTROLYTES
    APPETECCHI, GB
    CROCE, F
    SCROSATI, B
    [J]. ELECTROCHIMICA ACTA, 1995, 40 (08) : 991 - 997
  • [5] Thermal stability and flammability of electrolytes for lithium-ion batteries
    Arbizzani, Catia
    Gabrielli, Giulio
    Mastragostino, Marina
    [J]. JOURNAL OF POWER SOURCES, 2011, 196 (10) : 4801 - 4805
  • [6] A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions
    Aurbach, D
    Zinigrad, E
    Cohen, Y
    Teller, H
    [J]. SOLID STATE IONICS, 2002, 148 (3-4) : 405 - 416
  • [7] Bhattacharyya R, 2010, NAT MATER, V9, P504, DOI [10.1038/nmat2764, 10.1038/NMAT2764]
  • [8] Bouchet R, 2013, NAT MATER, V12, P452, DOI [10.1038/NMAT3602, 10.1038/nmat3602]
  • [9] Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
  • [10] Chandrashekar S, 2012, NAT MATER, V11, P311, DOI [10.1038/NMAT3246, 10.1038/nmat3246]