Existence results for some nonlinear elliptic equations via topological degree methods

被引:20
作者
Abbassi, Adil [1 ]
Allalou, Chakir [1 ]
Kassidi, Abderrazak [1 ]
机构
[1] Sultan Moulay Slimane Univ, Lab LMACS, FST Beni Mellal, Beni Mellal, Morocco
关键词
Elliptic equations; Weighted Sobolev spaces; Hardy inequality; Topological degree; Weak solutions; DIFFUSION;
D O I
10.1007/s41808-021-00098-w
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article is devoted to study the existence of weak solutions to a Dirichlet boundary value problem related to the following nonlinear elliptic equation -div(a(x,u, del u) - lambda g(x, u, del u) = b(x)vertical bar u vertical bar(q-2)u, where -div(a(x,u, del u) is a Leray-Lions operator acting from W-0(1,p)(Omega, w) to its dual W--1,W-p '(Omega, w*). On the nonlinear term g(x, s, eta), we only assume the growth condition on eta. Our approach is based on the topological degree introduced by Berkovits.
引用
收藏
页码:121 / 136
页数:16
相关论文
共 35 条
[1]  
Abbassi A., 2020, Moroccan Journal of Pure and Applied Analysis, V6, P231
[2]  
Abbassi A., 2020, NONLINEAR DYN SYST T, V20
[3]  
Abbassi A., 2019, Nonlinear Analysis: Problems, Applications and Computational Methods. SM2A 2019, V168, P102, DOI [10.1007/978, DOI 10.1007/978]
[4]  
Akdim Y, 2018, Moroc J Pure Appl Anal, V4, P171
[5]  
Akdim Y., 2001, Elec. Journal of Diff.Equations, V2001, P1
[6]  
Akdim Y, 2014, Anal Theory Appl., V30, P318
[7]  
Bendahmane M, 2006, ELECTRON J DIFFER EQ
[8]   Extension of the Leray-Schauder degree for abstract Hammerstein type mappings [J].
Berkovits, J. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 234 (01) :289-310
[9]   L-INFINITY ESTIMATE FOR SOME NONLINEAR ELLIPTIC PARTIAL-DIFFERENTIAL EQUATIONS AND APPLICATION TO AN EXISTENCE RESULT [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1992, 23 (02) :326-333
[10]   EXISTENCE OF BOUNDED SOLUTIONS FOR NON-LINEAR ELLIPTIC UNILATERAL PROBLEMS [J].
BOCCARDO, L ;
MURAT, F ;
PUEL, JP .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1988, 152 :183-196