An Efficient Multi-Level Convolutional Neural Network Approach for White Blood Cells Classification
被引:38
作者:
Cheuque, Cesar
论文数: 0引用数: 0
h-index: 0
机构:
Univ Andres Bello, Fac Ingn, Vina Del Mar 2531015, ChileUniv Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Cheuque, Cesar
[1
]
Querales, Marvin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valparaiso, Escuela Tecnol Med, Vina Del Mar 2540064, ChileUniv Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Querales, Marvin
[2
]
Leon, Roberto
论文数: 0引用数: 0
h-index: 0
机构:
Univ Andres Bello, Fac Ingn, Vina Del Mar 2531015, ChileUniv Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Leon, Roberto
[1
]
Salas, Rodrigo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Valparaiso, Escuela Ingn C Biomed, Ctr Invest & Desarrollo Ingn Salud, Valparaiso 2362905, Chile
Inst Milenio Intelligent Healthcare Engn, Valparaiso 2362905, ChileUniv Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Salas, Rodrigo
[3
,4
]
Torres, Romina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Inst Milenio Intelligent Healthcare Engn, Valparaiso 2362905, ChileUniv Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
Torres, Romina
[1
,4
]
机构:
[1] Univ Andres Bello, Fac Ingn, Vina Del Mar 2531015, Chile
[2] Univ Valparaiso, Escuela Tecnol Med, Vina Del Mar 2540064, Chile
[3] Univ Valparaiso, Escuela Ingn C Biomed, Ctr Invest & Desarrollo Ingn Salud, Valparaiso 2362905, Chile
white blood cells classification;
deep learning;
multi-level classification;
multi-source datasets;
IDENTIFICATION;
SEGMENTATION;
FEATURES;
IMAGES;
MODELS;
SYSTEM;
D O I:
10.3390/diagnostics12020248
中图分类号:
R5 [内科学];
学科分类号:
1002 ;
100201 ;
摘要:
The evaluation of white blood cells is essential to assess the quality of the human immune system; however, the assessment of the blood smear depends on the pathologist's expertise. Most machine learning tools make a one-level classification for white blood cell classification. This work presents a two-stage hybrid multi-level scheme that efficiently classifies four cell groups: lymphocytes and monocytes (mononuclear) and segmented neutrophils and eosinophils (polymorphonuclear). At the first level, a Faster R-CNN network is applied for the identification of the region of interest of white blood cells, together with the separation of mononuclear cells from polymorphonuclear cells. Once separated, two parallel convolutional neural networks with the MobileNet structure are used to recognize the subclasses in the second level. The results obtained using Monte Carlo cross-validation show that the proposed model has a performance metric of around 98.4% (accuracy, recall, precision, and F1-score). The proposed model represents a good alternative for computer-aided diagnosis (CAD) tools for supporting the pathologist in the clinical laboratory in assessing white blood cells from blood smear images.