Coherent WDM transmission using quantum-dash mode-locked laser diodes as multi-wavelength source and local oscillator

被引:39
作者
Kemal, Juned N. [1 ]
Marin-Palomo, Pablo [1 ]
Panapakkam, Vivek [2 ]
Trocha, Philipp [1 ]
Wolf, Stefan [1 ]
Merghem, Kamel [3 ]
Lelarge, Francois [4 ]
Ramdane, Abderrahim [2 ]
Randel, Sebastian [1 ]
Freude, Wolfgang [1 ]
Koos, Christian [1 ,5 ]
机构
[1] KIT, Inst Photon & Quantum Elect IPQ, Karlsruhe, Germany
[2] Univ Paris Sud, Univ Paris Saclay, C2N, CNRS, Paris, France
[3] Inst Mines Telecom, Telecom SudParis, Evry, France
[4] Almae Technol, Marcoussis, France
[5] KIT, IMT, Karlsruhe, Germany
基金
欧盟地平线“2020”; 欧洲研究理事会; 欧盟第七框架计划;
关键词
OPTICAL FREQUENCY COMB; PERFORMANCE; TEMPERATURE; RECOVERY;
D O I
10.1364/OE.27.031164
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHQ. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception. In our experiments, we demonstrate transmission of an aggregate net data rate of 3.9 Tbit/s (23 x 45 GBd PDM-QPSK, 7% FEC overhead) over 75 km standard single-mode fiber (SSMF). To the best of our knowledge, this represents the first demonstration of a coherent WDM link that relies on QD-MLLD both at the transmitter and the receiver. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:31164 / 31175
页数:12
相关论文
共 48 条
[1]   Generation of Coherent Multicarrier Signals by Gain Switching of Discrete Mode Lasers [J].
Anandarajah, P. M. ;
Maher, R. ;
Xu, Y. Q. ;
Latkowski, S. ;
O'Carroll, J. ;
Murdoch, S. G. ;
Phelan, R. ;
O'Gorman, J. ;
Barry, L. P. .
IEEE PHOTONICS JOURNAL, 2011, 3 (01) :112-122
[2]   Ultrahigh Count Coherent WDM Channels Transmission Using Optical Parametric Comb-Based Frequency Synthesizer [J].
Ataie, Vahid ;
Temprana, Eduardo ;
Liu, Lan ;
Myslivets, Evgeny ;
Kuo, Bill Ping-Piu ;
Alic, Nikola ;
Radic, Stojan .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2015, 33 (03) :694-699
[3]   InP-Based Generic Foundry Platform for Photonic Integrated Circuits [J].
Augustin, Luc M. ;
Santos, Rui ;
den Haan, Erik ;
Kleijn, Steven ;
Thijs, Peter J. A. ;
Latkowski, Sylwester ;
Zhao, Dan ;
Yao, Weiming ;
Bolk, Jeroen ;
Ambrosius, Huub ;
Mingaleev, Sergei ;
Richter, Andre ;
Bakker, Arjen ;
Korthorst, Twan .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2018, 24 (01)
[4]   Forward Error Correction for 100 G Transport Networks [J].
Chang, Frank ;
Onohara, Kiyoshi ;
Mizuochi, Takashi .
IEEE COMMUNICATIONS MAGAZINE, 2010, 48 (03) :S48-S55
[5]  
Cisco, 2018, CISC VIS NETW WHIT P
[6]   Analytical Modeling of the Temperature Performance of Monolithic Passively Mode-Locked Quantum Dot Lasers [J].
Crowley, Mark Thomas ;
Murrell, David ;
Patel, Nishant ;
Breivik, Magnus ;
Lin, Chang-Yi ;
Li, Yan ;
Fimland, Bjorn-Ove ;
Lester, Luke F. .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2011, 47 (08) :1059-1068
[7]   Silicon Photonics in Optical Coherent Systems [J].
Doerr, Christopher ;
Chen, Long .
PROCEEDINGS OF THE IEEE, 2018, 106 (12) :2291-2301
[8]  
Elbers J.P., 2017, Advanced Photonics 2017 (IPR, NOMA, Sensors, Networks, SPPCom, PS), OSA Technical Digest (online)
[9]  
Farrow C. W., 1988, 1988 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.88CH2458-8), P2641, DOI 10.1109/ISCAS.1988.15483
[10]   Measurement of the thermal resistance of VCSEL devices [J].
Flick, T. ;
Becks, K. H. ;
Dopke, J. ;
Maettig, P. ;
Tepel, P. .
JOURNAL OF INSTRUMENTATION, 2011, 6