Symbolic Execution and Thresholding for Efficiently Tuning Fuzzy Logic Programs

被引:9
作者
Moreno, Gines [1 ]
Penabad, Jaime [2 ]
Riaza, Jose A. [1 ]
Vidal, German [3 ]
机构
[1] UCLM, Dept Comp Syst, Albacete 02071, Spain
[2] UCLM, Dept Math, Albacete 02071, Spain
[3] Univ Politecn Valencia, MiST, DSIC, Valencia, Spain
来源
LOGIC-BASED PROGRAM SYNTHESIS AND TRANSFORMATION, LOPSTR 2016 | 2017年 / 10184卷
关键词
Fuzzy logic programming; Symbolic execution; Tuning;
D O I
10.1007/978-3-319-63139-4_8
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Fuzzy logic programming is a growing declarative paradigm aiming to integrate fuzzy logic into logic programming. One of the most difficult tasks when specifying a fuzzy logic program is determining the right weights for each rule, as well as the most appropriate fuzzy connectives and operators. In this paper, we introduce a symbolic extension of fuzzy logic programs in which some of these parameters can be left unknown, so that the user can easily see the impact of their possible values. Furthermore, given a number of test cases, the most appropriate values for these parameters can be automatically computed. Finally, we show some benchmarks that illustrate the usefulness of our approach.
引用
收藏
页码:131 / 147
页数:17
相关论文
共 24 条
  • [1] Fuzzy XPath for the Automatic Search of Fuzzy Formulae Models
    Almendros-Jimenez, Jesus M.
    Bofill, Miquel
    Luna-Tedesqui, Alejandro
    Moreno, Gines
    Vazquez, Carlos
    Villaret, Mateu
    [J]. SCALABLE UNCERTAINTY MANAGEMENT (SUM 2015), 2015, 9310 : 385 - 398
  • [2] Fuzzy XPath through Fuzzy Logic Programming
    Almendros-Jimenez, Jesus M.
    Luna Tedesqui, Alejandro
    Moreno, Gines
    [J]. NEW GENERATION COMPUTING, 2015, 33 (02) : 173 - 209
  • [3] Building Automated Theorem Provers for Infinitely-Valued Logics with Satisfiability Modulo Theory Solvers
    Ansotegui, Carlos
    Bofill, Miquel
    Manya, Felip
    Villaret, Mateu
    [J]. 2012 42ND IEEE INTERNATIONAL SYMPOSIUM ON MULTIPLE-VALUED LOGIC (ISMVL), 2012, : 25 - 30
  • [4] Baldwin J.F., 1995, Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence
  • [5] Satisfiability modulo theories
    Barrett, Clark
    Sebastiani, Roberto
    Seshia, Sanjit A.
    Tinelli, Cesare
    [J]. Frontiers in Artificial Intelligence and Applications, 2009, 185 (01) : 825 - 885
  • [6] Bofill M., 2013, PROGRAMMING COMPUTER, V64, P19
  • [7] ISHIZUKA M, 1985, P 9 INT JOINT C ART, P701
  • [8] Julián P, 2006, J UNIVERS COMPUT SCI, V12, P1679
  • [9] Julián P, 2010, STUD FUZZ SOFT COMP, V249, P125
  • [10] An improved reductant calculus using fuzzy partial evaluation techniques
    Julian, Pascual
    Moreno, Gines
    Penabad, Jaime
    [J]. FUZZY SETS AND SYSTEMS, 2009, 160 (02) : 162 - 181