Bidimensional versus tridimensional oxygen vacancy diffusion in SnO2-x under different gas environments

被引:25
作者
Lopez, N. [1 ]
Daniel Prades, J. [2 ,3 ]
Hernandez-Ramirez, F. [2 ,3 ]
Morante, J. R. [2 ,3 ]
Pan, J. [4 ]
Mathur, S. [4 ]
机构
[1] ICIQ, Inst Chem Res Catalonia, Tarragona 43007, Spain
[2] Catalonia Inst Energy Res, IREC, Barcelona 08019, Spain
[3] Univ Barcelona, Fac Phys, Dept Elect, E-08028 Barcelona, Spain
[4] Univ Cologne, Dept Inorgan Chem, D-5000 Cologne 41, Germany
关键词
DENSITY-FUNCTIONAL THEORY; TIN OXIDE; NANOWIRES; ADSORPTION; SURFACE; METAL; STATE; CATALYSIS; SNO2(110); POINTS;
D O I
10.1039/b921213b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Metal oxides present oxygen defects that induce different chemical and physical properties. Experiments performed in SnO2-x sensors show that the dynamics of these vacancies are strongly affected by the presence of different gases in the environment. Experimentally, the electrical resistance of individual metal oxide SnO2-x nanowires shows modulation: when the environment is oxygen rich long term drifts (hours) are observed indicating extended vacancy dynamics. Instead, if CO is present, drifts disappear in minutes. Density functional theory indicates that changes in resistance follow the extension of reoxidation. For oxygen-poor environments, oxygen vacancy excorporation and healing are confined to the near-surface layer of SnO2-x (bidimensional or near-surface diffusion), and completed in short times. Under oxygen-rich conditions, tridimensional diffusion of oxygen vacancies towards the surface takes place at room temperature. In this case, a push-pull mechanism allows bulk-to-surface diffusion and as a consequence resistance drifts are longer and the vacancy quenching is more extensive.
引用
收藏
页码:2401 / 2406
页数:6
相关论文
共 38 条
[1]   Metal oxide-based gas sensor research: How to? [J].
Barsan, N. ;
Koziej, D. ;
Weimar, U. .
SENSORS AND ACTUATORS B-CHEMICAL, 2007, 121 (01) :18-35
[2]   The surface and materials science of tin oxide [J].
Batzill, M ;
Diebold, U .
PROGRESS IN SURFACE SCIENCE, 2005, 79 (2-4) :47-154
[3]   Surface structure of TiO2(011)-(2x1) -: art. no. 036104 [J].
Beck, TJ ;
Klust, A ;
Batzill, M ;
Diebold, U ;
Di Valentin, C ;
Selloni, A .
PHYSICAL REVIEW LETTERS, 2004, 93 (03) :036104-1
[4]   Acid and basic catalysis [J].
Bronsted, JN .
CHEMICAL REVIEWS, 1928, 5 (03) :231-338
[5]   First-principles calculations of the atomic and electronic structure of F centers in the bulk and on the (001) surface of SrTiO3 -: art. no. 064106 [J].
Carrasco, J ;
Illas, F ;
Lopez, N ;
Kotomin, EA ;
Zhukovskii, YF ;
Evarestov, RA ;
Mastrikov, YA ;
Piskunov, S ;
Maier, J .
PHYSICAL REVIEW B, 2006, 73 (06)
[6]   Bulk and surface oxygen vacancy formation and diffusion in single crystals, ultrathin films, and metal grown oxide structures [J].
Carrasco, J. ;
Lopez, N. ;
Illas, F. ;
Freund, H. -J. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (07)
[7]   First principles analysis of the stability and diffusion of oxygen vacancies in metal oxides [J].
Carrasco, J ;
Lopez, N ;
Illas, F .
PHYSICAL REVIEW LETTERS, 2004, 93 (22)
[8]   O2 evolution on a clean partially reduced rutile TiO2(110) surface and on the same surface precovered with Au1 and Au2:: The importance of spin conservation [J].
Chretien, Steeve ;
Metiu, Horia .
JOURNAL OF CHEMICAL PHYSICS, 2008, 129 (07)
[9]   Inertia and driving force of chemical reactions. [J].
Evans, MG ;
Polanyi, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1938, 34 (01) :0011-0023
[10]   Oxygen vacancies in transition metal and rare earth oxides: Current state of understanding and remaining challenges [J].
Ganduglia-Pirovano, M. Veronica ;
Hofmann, Alexander ;
Sauer, Joachim .
SURFACE SCIENCE REPORTS, 2007, 62 (06) :219-270