Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation

被引:314
|
作者
Salama, El-Sayed [1 ]
Kurade, Mayur B. [1 ]
Abou-Shanab, Reda A. I. [2 ]
El-Dalatony, Marwa M. [1 ]
Yang, Il-Seung [1 ]
Min, Booki [3 ]
Jeon, Byong-Hun [1 ]
机构
[1] Hanyang Univ, Dept Earth Resources & Environm Engn, Seoul 04763, South Korea
[2] City Sci Res & Technol Applicat, Dept Environm Biotechnol, Alexandria 21934, Egypt
[3] Kyung Hee Univ, Dept Environm Sci & Engn, 1 Seocheon Dong, Yongin 446701, Gyeonggi Do, South Korea
基金
新加坡国家研究基金会;
关键词
Microalgae; Biomass; Wastewater treatment; Nutrient removal; Bioremediation; Massive cultivation; Open system; Close system; Biofuel; RATE ALGAL POND; NUTRIENT REMOVAL; CHLORELLA-VULGARIS; BIODIESEL PRODUCTION; EMERGING CONTAMINANTS; SCENEDESMUS-OBLIQUUS; ANAEROBIC-DIGESTION; LIPID-ACCUMULATION; TECHNOECONOMIC ANALYSIS; PHOSPHORUS RECOVERY;
D O I
10.1016/j.rser.2017.05.091
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microalgae are a potential source of sustainable biomass feedstock for biofuel generation, and can proliferate under versatile environmental conditions. Mass cultivation of microalgae is the most overpriced and technically challenging step in microalgal biofuel generation. Wastewater is an available source of the water plus nutrients necessary for algae cultivation. Microalgae provide a cost-effective and sustainable means of advanced (waste) water treatment with the simultaneous production of commercially valuable products. Microalgae show higher efficiency in nutrient removal than other microorganisms because the nutrients (ammonia, nitrate, phosphate, urea and trace elements) present in various wastewaters are essential for microalgal growth. Potential progress in the area of microalgal cultivation coupled with wastewater treatment in open and closed systems has led to an improvement in algal biomass production. However, significant efforts are still required for the development and optimization of a coupled system to simultaneously generate biomass and treat wastewater. In this review, the systematic description of the technologies required for the successful integration of wastewater treatment and cultivation of microalgae for biomass production toward biofuel generation was discussed. It deeply reviews the microalgae-mediated treatment of different wastewaters (including municipal, piggery/swine, industrial, and anaerobic wastewater), and highlight the wastewater characteristics suitable for microalgae cultivation. Various pretreatment methods (such as filtration, autoclaving, UV application, and dilution) needed for wastewater prior to its use for microalgae cultivation have been discussed. The selection of potential microalgae species that can grow in wastewater and generate a large amount of biomass has been considered. Discussion on microalgal cultivation systems (including raceways, photobioreactors, turf scrubbers, and hybrid systems) that use wastewater, evaluating the capital expenditures (CAPEX) and operational expenditures (OPEX) of each system was reported. In view of the limitations of recent studies, the future directions for integrated wastewater treatment and microalgae biomass production for industrial applications were suggested.
引用
收藏
页码:1189 / 1211
页数:23
相关论文
共 50 条
  • [21] Nutrient removal and biomass production: advances in microalgal biotechnology for wastewater treatment
    Abinandan, Sudharsanam
    Subashchandrabose, Suresh R.
    Venkateswarlu, Kadiyala
    Megharaj, Mallavarapu
    CRITICAL REVIEWS IN BIOTECHNOLOGY, 2018, 38 (08) : 1244 - 1260
  • [22] Thermochemical conversion of microalgal biomass for biofuel production
    Raheem, Abdul
    Azlina, W. A. K. G. Wan
    Yap, Y. H. Taufiq
    Danquah, Michael K.
    Harun, Razif
    RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2015, 49 : 990 - 999
  • [23] Strategies to enhance production of microalgal biomass and lipids for biofuel feedstock
    Chu, Wan-Loy
    EUROPEAN JOURNAL OF PHYCOLOGY, 2017, 52 (04) : 419 - 437
  • [24] Integrated culture and harvest systems for improved microalgal biomass production and wastewater treatment
    Huang, Kai-Xuan
    Vadiveloo, Ashiwin
    Zhou, Jin-Long
    Yang, Lei
    Chen, Dong-Zhi
    Gao, Feng
    BIORESOURCE TECHNOLOGY, 2023, 376
  • [25] Wastewater treatment high rate algal ponds (WWT-HRAP) for low-cost biofuel production
    Mehrabadi, Abbas
    Craggs, Rupert
    Farid, Mohammed M.
    BIORESOURCE TECHNOLOGY, 2015, 184 : 202 - 214
  • [26] Energy Return on Investment for Algal Biofuel Production Coupled with Wastewater Treatment
    Beal, Colin M.
    Stillwell, Ashlynn S.
    King, Carey W.
    Cohen, Stuart M.
    Berberoglu, Halil
    Bhattarai, Rajendra P.
    Connelly, Rhykka L.
    Webber, Michael E.
    Hebner, Robert E.
    WATER ENVIRONMENT RESEARCH, 2012, 84 (09) : 692 - 710
  • [27] The potential of microalgal biomass production for biotechnological purposes using wastewater resources
    Diniz, Graciela S.
    Silva, Anita F.
    Araujo, Ofelia Q. F.
    Chaloub, Ricardo M.
    JOURNAL OF APPLIED PHYCOLOGY, 2017, 29 (02) : 821 - 832
  • [28] Sustainable valorization of flue gas CO2 and wastewater for the production of microalgal biomass as a biofuel feedstock in closed and open reactor systems
    Nayak, Manoranjan
    Karemore, Ankush
    Sen, Ramkrishna
    RSC ADVANCES, 2016, 6 (94): : 91111 - 91120
  • [29] Applications of microalgal biofilms for wastewater treatment and bioenergy production
    Miranda, Ana F.
    Ramkumar, Narasimhan
    Andriotis, Constandino
    Hoeltkemeier, Thorben
    Yasmin, Aneela
    Rochfort, Simone
    Wlodkowic, Donald
    Morrison, Paul
    Roddick, Felicity
    Spangenberg, German
    Lal, Banwari
    Subudhi, Sanjukta
    Mouradov, Aidyn
    BIOTECHNOLOGY FOR BIOFUELS, 2017, 10
  • [30] Wastewater-leachate treatment by microalgae: Biomass, carbohydrate and lipid production
    Hernandez-Garcia, Andrea
    Velasquez-Orta, Sharon B.
    Novelo, Eberto
    Yanez-Noguez, Isaura
    Monje-Ramirez, Ignacio
    Orta Ledesma, Maria T.
    ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY, 2019, 174 : 435 - 444