Effect of van der Waals corrections on DFT-computed metallic surface properties

被引:39
作者
Chiter, Fatah [1 ,2 ]
Van Bac Nguyen [2 ]
Tarrat, Nathalie [2 ]
Benoit, Magali [2 ]
Tang, Hao [2 ]
Lacaze-Dufaure, Corinne [1 ]
机构
[1] Univ Toulouse, CIRIMAT, CNRS, INPT,UPS,ENSIACET 4, Allee Emile Monso BP F-44362, F-31030 Toulouse 4, France
[2] Univ Toulouse, CNRS, CEMES, UPS, 29 Rue Jeanne Marvig, F-31055 Toulouse 4, France
基金
奥地利科学基金会;
关键词
DENSITY-FUNCTIONAL THEORY; TOTAL-ENERGY CALCULATIONS; CU(111) SURFACE; FORCES; RELAXATION; ADSORPTION; DYNAMICS; AU(111); FE;
D O I
10.1088/2053-1591/3/4/046501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
State-of-the-art van der Waals (vdW) corrected density functional theory (DFT) is routinely used to overcome the failure of standard DFT in the description of molecule/surface long range interactions. However, the systematic use of dispersion forces to model metallic surfaces could lead to less accurate results than the standard DFT and the effect of these corrections on the metal properties should be properly evaluated. In this framework, the behavior of two widely used vdW corrected DFT methods (DFT-D2 and vdW-DF/optB86b) has been evaluated on six metals, i.e. Al, Cu, Au, Ni, Co and Fe, with respect to standardGGA-DFT and experiments. Regarding bulk properties, general trends are found for the lattice parameter, cohesive energy and magnetic moment variations when the vdW correction is introduced. Surface energies, work functions and interlayer distances of closed packed surfaces, Al(111), Cu(111), Au(111) and magnetic Ni(111), Co(0001) and Fe(110), are also strongly affected by the dispersion forces. These modifications suggest a systematic verification of the surface properties when a dispersion correction is included.
引用
收藏
页数:13
相关论文
共 59 条
[1]   Control of the anisotropic shape of cobalt nanorods in the liquid phase: from experiment to theory ... and back [J].
Atmane, Kahina Ait ;
Michel, Carine ;
Piquemal, Jean-Yves ;
Sautet, Philippe ;
Beaunier, Patricia ;
Giraud, Marion ;
Sicard, Mickael ;
Nowak, Sophie ;
Losno, Remi ;
Viau, Guillaume .
NANOSCALE, 2014, 6 (05) :2682-2692
[2]   Geometry and Electronic Properties of Glycerol Adsorbed on Bare and Transition-Metal Surface-Alloyed Au(111): A Density Functional Theory Study [J].
Baltrusaitis, Jonas ;
Valter, Mikael ;
Hellman, Anders .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (03) :1749-1757
[3]   CU(111) SURFACE RELAXATION BY VLEED [J].
BARTOS, I ;
JAROS, P ;
BARBIERI, A ;
VANHOVE, MA ;
CHUNG, WF ;
CAI, Q ;
ALTMAN, MS .
SURFACE REVIEW AND LETTERS, 1995, 2 (04) :477-482
[4]   Perspective: Fifty years of density-functional theory in chemical physics [J].
Becke, Axel D. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18)
[5]   van der Waals forces in density functional theory: a review of the vdW-DF method [J].
Berland, Kristian ;
Cooper, Valentino R. ;
Lee, Kyuho ;
Schroeder, Elsebeth ;
Thonhauser, T. ;
Hyldgaard, Per ;
Lundqvist, Bengt I. .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (06)
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Tkatchenko-Scheffler van der Waals correction method with and without self-consistent screening applied to solids [J].
Bucko, Tomas ;
Lebegue, S. ;
Hafner, Juergen ;
Angyan, J. G. .
PHYSICAL REVIEW B, 2013, 87 (06)
[8]   Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals [J].
Burns, Lori A. ;
Vazquez-Mayagoitia, Alvaro ;
Sumpter, Bobby G. ;
Sherrill, C. David .
JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (08)
[9]   Insight into the description of van der Waals forces for benzene adsorption on transition metal (111) surfaces [J].
Carrasco, Javier ;
Liu, Wei ;
Michaelides, Angelos ;
Tkatchenko, Alexandre .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (08)
[10]   DFT studies of the bonding mechanism of 8-hydroxyquinoline and derivatives on the (111) aluminum surface [J].
Chiter, Fatah ;
Lacaze-Dufaure, Corinne ;
Tang, Hao ;
Pebere, Nadine .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2015, 17 (34) :22243-22258