Developing and Validating a Survival Prediction Model for NSCLC Patients Through Distributed Learning Across 3 Countries

被引:98
作者
Jochems, Arthur [1 ]
Deist, Timo M. [1 ]
El Naqa, Issam [2 ]
Kessler, Marc [2 ]
Mayo, Chuck [2 ]
Reeves, Jackson [2 ]
Jolly, Shruti [2 ]
Matuszak, Martha [2 ]
Ten Haken, Randall [2 ]
van Soest, Johan [1 ]
Oberije, Cary [1 ]
Faivre-Finn, Corinne [3 ]
Price, Gareth [3 ]
de Ruysscher, Dirk [1 ]
Lambin, Philippe [1 ]
Dekker, Andre [1 ]
机构
[1] Maastricht Univ, Med Ctr, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Maastricht, Netherlands
[2] Univ Michigan, Dept Radiat Oncol, Ann Arbor, MI 48109 USA
[3] Univ Manchester, Manchester Acad Hlth Sci Ctr, Christie NHS Fdn Trust, Manchester, Lancs, England
来源
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS | 2017年 / 99卷 / 02期
基金
欧盟地平线“2020”; 欧洲研究理事会;
关键词
CELL LUNG-CANCER; RECURSIVE PARTITIONING ANALYSIS; ONCOLOGY GROUP RTOG; GROSS TUMOR VOLUME; RADIATION-THERAPY; EXTERNAL VALIDATION; PROGNOSTIC-FACTORS; HEALTH-CARE; 2-YEAR SURVIVAL; DOSE-ESCALATION;
D O I
10.1016/j.ijrobp.2017.04.021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: Tools for survival prediction for non-small cell lung cancer (NSCLC) patients treated with chemoradiation or radiation therapy are of limited quality. In this work, we developed a predictive model of survival at 2 years. The model is based on a large volume of historical patient data and serves as a proof of concept to demonstrate the distributed learning approach. Methods and Materials: Clinical data from 698 lung cancer patients, treated with curative intent with chemoradiation or radiation therapy alone, were collected and stored at 2 different cancer institutes (559 patients at Maastro clinic (Netherlands) and 139 at Michigan university [ United States]). The model was further validated on 196 patients originating from The Christie (United Kingdon). A Bayesian network model was adapted for distributed learning (the animation can be viewed at https://www.youtube.com/watch?v=ZDJFOxpwqEA). Two-year posttreatment survival was chosen as the endpoint. The Maastro clinic cohort data are publicly available at https://www.cancerdata.org/publication/developing-and-validating-survival-prediction-model-nsclc-patients-through-distributed, and the developed models can be found at www.predictcancer.org. Results: Variables included in the final model were T and N category, age, performance status, and total tumor dose. The model has an area under the curve (AUC) of 0.66 on the external validation set and an AUC of 0.62 on a 5-fold cross validation. A model based on the T and N category performed with an AUC of 0.47 on the validation set, significantly worse than our model (P<.001). Learning the model in a centralized or distributed fashion yields a minor difference on the probabilities of the conditional probability tables (0.6%); the discriminative performance of the models on the validation set is similar (P=.26). Conclusions: Distributed learning from federated databases allows learning of predictive models on data originating from multiple institutions while avoiding many of the data-sharing barriers. We believe that distributed learning is the future of sharing data in health care. (C) 2017 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:344 / 352
页数:9
相关论文
共 54 条
[31]   Radiomics: Extracting more information from medical images using advanced feature analysis [J].
Lambin, Philippe ;
Rios-Velazquez, Emmanuel ;
Leijenaar, Ralph ;
Carvalho, Sara ;
van Stiphout, Ruud G. P. M. ;
Granton, Patrick ;
Zegers, Catharina M. L. ;
Gillies, Robert ;
Boellard, Ronald ;
Dekker, Andre ;
Aerts, Hugo J. W. L. .
EUROPEAN JOURNAL OF CANCER, 2012, 48 (04) :441-446
[32]   The ESTRO Breur Lecture 2009. From population to voxel-based radiotherapy: Exploiting intra-tumour and intra-organ heterogeneity for advanced treatment of non-small cell lung cancer [J].
Lambin, Philippe ;
Petit, Steven F. ;
Aerts, Hugo J. W. L. ;
van Elmpt, Wouter J. C. ;
Oberije, Cary J. G. ;
Starmans, Maud H. W. ;
van Stiphout, Ruud G. P. M. ;
van Dongen, Guus A. M. S. ;
Muylle, Kristoff ;
Flamen, Patrick ;
Dekker, Andre L. A. J. ;
De Ruysscher, Dirk .
RADIOTHERAPY AND ONCOLOGY, 2010, 96 (02) :145-152
[33]  
Langendijk H, 2001, Clin Lung Cancer, V3, P33, DOI 10.3816/CLC.2001.n.015
[34]   THE EM ALGORITHM FOR GRAPHICAL ASSOCIATION MODELS WITH MISSING DATA [J].
LAURITZEN, SL .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1995, 19 (02) :191-201
[35]   External validation of a prognostic CT-based radiomic signature in oropharyngeal squamous cell carcinoma [J].
Leijenaar, Ralph T. H. ;
Carvalho, Sara ;
Hoebers, Frank J. P. ;
Aerts, Hugo J. W. L. ;
Van Elmpt, Wouter J. C. ;
Huang, Shao Hui ;
Chan, Biu ;
Waldron, John N. ;
O'Sullivan, Brian ;
Lambin, Philippe .
ACTA ONCOLOGICA, 2015, 54 (09) :1423-1429
[36]   The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis [J].
Leijenaar, Ralph T. H. ;
Nalbantov, Georgi ;
Carvalho, Sara ;
van Elmpt, Wouter J. C. ;
Troost, Esther G. C. ;
Boellaard, Ronald ;
Aerts, Hugo J. W. L. ;
Gillies, Robert J. ;
Lambin, Philippe .
SCIENTIFIC REPORTS, 2015, 5
[37]   Hyperfractionated or Accelerated Radiotherapy in Lung Cancer: An Individual Patient Data Meta-Analysis [J].
Mauguen, Audrey ;
Le Pechoux, Cecile ;
Saunders, Michele I. ;
Schild, Steven E. ;
Turrisi, Andrew T. ;
Baumann, Michael ;
Sause, William T. ;
Ball, David ;
Belani, Chandra P. ;
Bonner, James A. ;
Zajusz, Aleksander ;
Dahlberg, Suzanne E. ;
Nankivell, Matthew ;
Mandrekar, Sumithra J. ;
Paulus, Rebecca ;
Behrendt, Katarzyna ;
Koch, Rainer ;
Bishop, James F. ;
Dische, Stanley ;
Arriagada, Rodrigo ;
De Ruysscher, Dirk ;
Pignon, Jean-Pierre .
JOURNAL OF CLINICAL ONCOLOGY, 2012, 30 (22) :2788-2797
[38]  
Non-small Cell Lung Cancer Collaborative Group, 2000, COCHRANE DATABASE SY
[39]   Is there a causal relationship between genetic changes and radiomics-based image features? An in vivo preclinical experiment with doxycycline inducible GADD34 tumor cells [J].
Panth, Kranthi Marella ;
Leijenaar, Ralph T. H. ;
Carvalho, Sara ;
Lieuwes, Natasja G. ;
Yaromina, Ala ;
Dubois, Ludwig ;
Lambin, Philippe .
RADIOTHERAPY AND ONCOLOGY, 2015, 116 (03) :462-466
[40]   American Society of Clinical Oncology treatment of unresectable non-small-cell lung cancer guideline: Update 2003 [J].
Pfister, DG ;
Johnson, DH ;
Azzoli, CG ;
Sause, W ;
Smith, TJ ;
Baker, S ;
Olak, J ;
Stover, D ;
Strawn, JR ;
Turrisi, AT ;
Somerfield, MR .
JOURNAL OF CLINICAL ONCOLOGY, 2004, 22 (02) :330-353