Semi-discrete central-upwind schemes with reduced dissipation for Hamilton-Jacobi equations

被引:19
作者
Bryson, S [1 ]
Kurganov, A
Levy, D
Petrova, G
机构
[1] Stanford Univ, Programme Sci Comp Computat Math, Moffett Field, CA 94035 USA
[2] NASA, Ames Res Ctr, Adv Supercomp Div, Moffett Field, CA 94035 USA
[3] Tulane Univ, Dept Math, New Orleans, LA 70115 USA
[4] Stanford Univ, Dept Math, Moffett Field, CA 94035 USA
[5] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Hamilton-Jacobi equations; central-upwind schemes; semi-discrete methods;
D O I
10.1093/imanum/drh015
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new family of Godunov-type semi-discrete central schemes for multidimensional Hamilton-Jacobi equations. These schemes are a less dissipative generalization of the central-upwind schemes that have been recently proposed in Kurganov, Noelle and Petrova (2001, SIAM J. Sci. Comput., 23, pp. 707-740). We provide the details of the new family of methods in one, two, and three space dimensions, and then verify their expected low-dissipative property in a variety of examples.
引用
收藏
页码:113 / 138
页数:26
相关论文
共 22 条
[1]  
Barles G., 1991, Asymptotic Analysis, V4, P271
[2]   Central schemes for multidimensional Hamilton-Jacobi equations [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03) :767-791
[3]   High-order central WENO schemes for multidimensional Hamilton-Jacobi equations [J].
Bryson, S ;
Levy, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2003, 41 (04) :1339-1369
[4]  
BRYSON S, 2003, P ENUMATH 2001, P45
[5]  
CRANDALL MG, 1984, MATH COMPUT, V43, P1, DOI 10.1090/S0025-5718-1984-0744921-8
[6]   Strong stability-preserving high-order time discretization methods [J].
Gottlieb, S ;
Shu, CW ;
Tadmor, E .
SIAM REVIEW, 2001, 43 (01) :89-112
[7]   A discontinuous Galerkin finite element method for Hamilton-Jacobi equations [J].
Hu, CQ ;
Shu, CW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02) :666-690
[8]   Weighted ENO schemes for Hamilton-Jacobi equations [J].
Jiang, GS ;
Peng, DP .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06) :2126-2143
[9]   Efficient implementation of weighted ENO schemes [J].
Jiang, GS ;
Shu, CW .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 126 (01) :202-228
[10]   New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations [J].
Kurganov, A ;
Tadmor, E .
JOURNAL OF COMPUTATIONAL PHYSICS, 2000, 160 (01) :241-282