Asymptotic Fuzzy Neural Network Control for Pure-Feedback Stochastic Systems Based on a Semi-Nussbaum Function Technique

被引:29
作者
Chen, Ci [1 ,2 ]
Liu, Zhi [1 ]
Xie, Kan [1 ,2 ]
Zhang, Yun [1 ]
Chen, C. L. Philip [3 ]
机构
[1] Guangdong Univ Technol, Sch Automat, Guangzhou 510006, Guangdong, Peoples R China
[2] Guangdong Key Lab IoT Informat Technol, Guangzhou 510006, Guangdong, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Macau 999078, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive control; asymptotic control; purefeedback stochastic systems; semi-Nussbaum function; MIMO NONLINEAR-SYSTEMS; TRACKING CONTROL; ADAPTIVE-CONTROL; STABILIZATION; STABILITY; CONSENSUS; DELAY;
D O I
10.1109/TCYB.2016.2628182
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most existing control results for pure-feedback stochastic systems are limited to a condition that tracking errors are bounded in probability. Departing from such bounded results, this paper proposes an asymptotic fuzzy neural network control for pure-feedback stochastic systems. The control goal is realized by proposing a novel semi-Nussbaum function-based technique and employing it in adaptive backstepping controller design. The proposed Nussbaum function is integrated with adaptive control technique to guarantee that the tracking error is asymptotically stable in probability.
引用
收藏
页码:2448 / 2459
页数:12
相关论文
共 73 条
  • [1] [Anonymous], 1995, NONLINEAR ADAPTIVE C
  • [2] Adaptive fuzzy system-based variable-structure controller for multivariable nonaffine nonlinear uncertain systems subject to actuator nonlinearities
    Boulkroune, A.
    M'saad, M.
    Farza, M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2017, 28 (11) : 3371 - 3384
  • [3] A projective synchronization scheme based on fuzzy adaptive control for unknown multivariable chaotic systems
    Boulkroune, A.
    Bouzeriba, A.
    Hamel, S.
    Bouden, T.
    [J]. NONLINEAR DYNAMICS, 2014, 78 (01) : 433 - 447
  • [4] Boulkroune A., 2008, P 4 INT IEEE C INT S, V1
  • [5] Adaptive fuzzy control-based projective synchronization of uncertain nonaffine chaotic systems
    Boulkroune, Abdesselem
    Bouzeriba, Amel
    Hamel, Sara
    Bouden, Toufik
    [J]. COMPLEXITY, 2015, 21 (02) : 180 - 192
  • [6] Adaptive fuzzy controller for non-affine systems with zero dynamics
    Boulkroune, Abdesselem
    Tadjine, Mohamed
    M'Saad, Mohammed
    Farza, Mondher
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2009, 40 (04) : 367 - 382
  • [7] Fuzzy approximate disturbance decoupling of MIMO nonlinear systems by backstepping and application to chemical processes
    Chen, B
    Liu, XP
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2005, 13 (06) : 832 - 847
  • [8] Fuzzy Neural Network-Based Adaptive Control for a Class of Uncertain Nonlinear Stochastic Systems
    Chen, C. L. Philip
    Liu, Yan-Jun
    Wen, Guo-Xing
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2014, 44 (05) : 583 - 593
  • [9] Adaptive Fuzzy Asymptotic Control of MIMO Systems With Unknown Input Coefficients Via a Robust Nussbaum Gain-Based Approach
    Chen, Ci
    Liu, Zhi
    Xie, Kan
    Liu, Yanjun
    Zhang, Yun
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (05) : 1252 - 1263
  • [10] Asymptotic Fuzzy Tracking Control for a Class of Stochastic Strict-Feedback Systems
    Chen, Ci
    Liu, Zhi
    Zhang, Yun
    Chen, C. L. Philip
    Xie, Shengli
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2017, 25 (03) : 556 - 568