Increasing Compound Identification Rates in Untargeted Lipidomics Research with Liquid Chromatography Drift Time-Ion Mobility Mass Spectrometry

被引:61
作者
Blazenovic, Ivana [1 ]
Shen, Tong [1 ]
Mehta, Sajjan S. [1 ]
Kind, Tobias [1 ]
Ji, Jian [1 ,2 ]
Piparo, Marco [1 ,3 ]
Cacciola, Francesco [4 ]
Mondello, Luigi [3 ,5 ,6 ]
Fiehn, Oliver [1 ,7 ]
机构
[1] Univ Calif Davis, West Coast Metabol Ctr, Davis, CA 95616 USA
[2] Jiangnan Univ, Natl Engn Res Ctr Funct Foods, Synerget Innovat Ctr Food Safety & Nutr, State Key Lab Food Sci & Technol,Sch Food Sci, Wuxi 214122, Jiangsu, Peoples R China
[3] Univ Messina, Polo Annunziata, Dipartimento Sci Chim Biol Farmaceut & Ambientali, Viale Annunziata, I-98168 Messina, Italy
[4] Univ Messina, Dipartimento Sci Biomed Odontoiatr & Immagini Mor, Via Consolare Valeria, I-98125 Messina, Italy
[5] Univ Messina, Dipartimento Sci Chim Biol Farmaceut & Ambientali, Chromaleont Srl, Polo Annunziata, Viale Annunziata, I-98168 Messina, Italy
[6] Univ Campus Biomed Rome, Dept Med, Via Alvaro del Portillo 21, I-00128 Rome, Italy
[7] King Abdulaziz Univ, Dept Biochem, Jeddah 21589, Saudi Arabia
关键词
LIPIDS; LIPOPROTEINS; METABOLOMICS; DISEASE; TOOLS; MS;
D O I
10.1021/acs.analchem.8b01527
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Unknown metabolites represent a bottleneck in untargeted metabolomics research. Ion mobility-mass spectrometry (IM-MS) facilitates lipid identification because it yields collision cross section (CCS) information that is independent from mass or lipophilicity. To date, only a few CCS values are publicly available for complex lipids such as phosphatidylcholines, sphingomyelins, or triacylglycerides. This scarcity of data limits the use of CCS values as an identification parameter that is orthogonal to mass, MS/MS, or retention time. A combination of lipid descriptors was used to train five different machine learning algorithms for automatic lipid annotations, combining accurate mass (m/z), retention time (RT), CCS values, carbon number, and unsaturation level. Using a training data set of 429 true positive lipid annotations from four lipid classes, 92.7% correct annotations overall were achieved using internal cross-validation. The trained prediction model was applied to an unknown milk lipidomics data set and allowed for class 3 level annotations of most features detected in this application set according to Metabolomics Standards Initiative (MSI) reporting guidelines.
引用
收藏
页码:10758 / 10764
页数:7
相关论文
共 53 条
[1]   SERUM-LIPIDS, DIET, AND CARDIOVASCULAR-DISEASE [J].
ALBRINK, MJ .
POSTGRADUATE MEDICINE, 1974, 55 (04) :86-92
[2]   The role of lipids in defining membrane protein interactions: insights from mass spectrometry [J].
Barrera, Nelson P. ;
Zhou, Min ;
Robinson, Carol V. .
TRENDS IN CELL BIOLOGY, 2013, 23 (01) :1-8
[3]   Tandem Mass Spectrometry in Combination with Product Ion Mobility for the Identification of Phospholipids [J].
Berry, Karin A. Zemski ;
Barkley, Robert M. ;
Berry, Joseph J. ;
Hankin, Joseph A. ;
Hoyes, Emmy ;
Browns, Jeffery M. ;
Murphy, Robert C. .
ANALYTICAL CHEMISTRY, 2017, 89 (01) :916-921
[4]   Instrument parameters controlling retention precision in gradient elution reversed-phase liquid chromatography [J].
Beyaz, Ayse ;
Fan, Wenzhe ;
Carr, Peter W. ;
Schellinger, Adam P. .
JOURNAL OF CHROMATOGRAPHY A, 2014, 1371 :90-105
[5]   Comprehensive comparison of in silico MS/MS fragmentation tools of the CASMI contest: database boosting is needed to achieve 93% accuracy [J].
Blazenovic, Ivana ;
Kind, Tobias ;
Torbasinovic, Hrvoje ;
Obrenovic, Slobodan ;
Mehta, Sajjan S. ;
Tsugawa, Hiroshi ;
Wermuth, Tobias ;
Schauer, Nicolas ;
Jahn, Martina ;
Biedendieck, Rebekka ;
Jahn, Dieter ;
Fiehn, Oliver .
JOURNAL OF CHEMINFORMATICS, 2017, 9
[6]   Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms [J].
Cajka, Tomas ;
Smilowitz, Jennifer T. ;
Fiehn, Oliver .
ANALYTICAL CHEMISTRY, 2017, 89 (22) :12360-12368
[7]  
Cajka T, 2017, METHODS MOL BIOL, V1609, P149, DOI 10.1007/978-1-4939-6996-8_14
[8]   Lipids, Lipoproteins, and Cardiovascular Disease: Clinical Pharmacology Now and in the Future [J].
Chait, Alan ;
Eckel, Robert H. .
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2016, 101 (03) :804-814
[9]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[10]   High Energy Collisions on Tandem Time-of-Flight Mass Spectrometers [J].
Cotter, Robert J. .
JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY, 2013, 24 (05) :657-674