Scaling properties of spatially extended chaotic systems

被引:0
|
作者
Szendro, I. G. [1 ]
Lopez, J. M.
机构
[1] UC, CSIC, Inst Fis Cantabria, IFCA, Santander 39005, Spain
[2] Univ Cantabria, Dept Fis Moderna, Santander 39005, Spain
来源
关键词
LYAPUNOV; PERTURBATIONS; INTERFACES; DYNAMICS;
D O I
10.1140/epjst/e2007-00065-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate the scaling properties of Lyapunov eigenvectors and exponents in coupled-map lattices exhibiting space-time chaos. A deep interrelation between spatiotemporal chaos and kinetic roughening of surfaces is postulated. We show that the logarithm of unstable eigenvectors exhibits scale-invariance with roughness exponents that can be predicted by a simple scaling conjecture. We argue that these scaling properties should be generic in spatially homogeneous extended systems with local diffusive-like couplings.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [1] Scaling properties of spatially extended chaotic systems
    I. G. Szendro
    J. M. López
    The European Physical Journal Special Topics, 2007, 143 : 13 - 18
  • [2] Dynamic scaling of bred vectors in spatially extended chaotic systems
    Primo, C.
    Szendro, I. G.
    Rodriguez, M. A.
    Lopez, J. M.
    EUROPHYSICS LETTERS, 2006, 76 (05): : 767 - 773
  • [3] Modeling chaotic and spatially extended systems
    Merkwirth, C
    Parlitz, U
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 : S113 - S116
  • [4] Chaotic transients in spatially extended systems
    Tel, Tamas
    Lai, Ying-Cheng
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 460 (06): : 245 - 275
  • [5] Symmetry and control: spatially extended chaotic systems
    Grigoriev, RO
    PHYSICA D, 2000, 140 (3-4): : 171 - 192
  • [6] Synchronization of spatially extended chaotic systems with asymmetric coupling
    Boccaletti, S
    Mendoza, C
    Bragard, J
    BRAZILIAN JOURNAL OF PHYSICS, 2005, 35 (2B) : 411 - 417
  • [7] Chaotic synchronizations of spatially extended systems as nonequilibrium phase transitions
    Cencini, M.
    Tessone, C. J.
    Torcini, A.
    CHAOS, 2008, 18 (03)
  • [8] Chaotic waves and phase synchronization in spatially extended ecological systems
    Blasius, B
    Stone, L
    STOCHASTIC AND CHAOTIC DYNAMICS IN THE LAKES, 2000, 502 : 221 - 225
  • [9] Asymmetric coupling effects in the synchronization of spatially extended chaotic systems
    Bragard, J
    Boccaletti, S
    Mancini, H
    PHYSICAL REVIEW LETTERS, 2003, 91 (06)
  • [10] How often are chaotic transients in spatially extended ecological systems?
    Dhamala, M
    Lai, YC
    Holt, RD
    PHYSICS LETTERS A, 2001, 280 (5-6) : 297 - 302