BERNOULLI NUMBERS AND SOLITONS - REVISITED

被引:5
|
作者
Rzadkowski, Grzegorz [1 ]
机构
[1] Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, PL-01815 Warsaw, Poland
关键词
Eulerian numbers; Riccati's equation; Bernoulli numbers; KdV equation; soliton; POLYNOMIALS;
D O I
10.1142/S1402925110000635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we propose a new proof of the Grosset-Veselov formula connecting one-soliton solution of the Korteweg-de Vries equation to the Bernoulli numbers. The approach involves Eulerian numbers and Riccati's differential equation.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 50 条
  • [21] Recursion Formulas for Bernoulli Numbers
    Kim, Aeran
    THAI JOURNAL OF MATHEMATICS, 2022, 20 (01): : 55 - 67
  • [22] Bernoulli numbers and symmetric functions
    Mircea Merca
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [23] Cubic harmonics and Bernoulli numbers
    Iwasaki, Katsunori
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2012, 119 (06) : 1216 - 1234
  • [24] Convolution formulae for Bernoulli numbers
    Chu, Wenchang
    Wang, Chenying
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2010, 21 (06) : 437 - 457
  • [25] Generalized hypergeometric Bernoulli numbers
    Chakraborty, Kalyan
    Komatsu, Takao
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2021, 115 (03)
  • [26] Bernoulli numbers and binary trees
    Fuchs, P
    NUMBER THEORY, 2000, 20 : 111 - 117
  • [27] Bernoulli numbers and symmetric functions
    Merca, Mircea
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [28] A RECURRENCE RELATION FOR BERNOULLI NUMBERS
    Kucuksakalli, Omer
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2013, 42 (04): : 319 - 329
  • [29] Generalized hypergeometric Bernoulli numbers
    Kalyan Chakraborty
    Takao Komatsu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2021, 115
  • [30] Bernoulli numbers with level 2
    Komatsu, Takao
    AEQUATIONES MATHEMATICAE, 2025, 99 (01) : 71 - 87