BERNOULLI NUMBERS AND SOLITONS - REVISITED

被引:5
作者
Rzadkowski, Grzegorz [1 ]
机构
[1] Cardinal Stefan Wyszynski Univ Warsaw, Fac Math & Nat Sci, PL-01815 Warsaw, Poland
关键词
Eulerian numbers; Riccati's equation; Bernoulli numbers; KdV equation; soliton; POLYNOMIALS;
D O I
10.1142/S1402925110000635
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we propose a new proof of the Grosset-Veselov formula connecting one-soliton solution of the Korteweg-de Vries equation to the Bernoulli numbers. The approach involves Eulerian numbers and Riccati's differential equation.
引用
收藏
页码:121 / 126
页数:6
相关论文
共 9 条
[1]  
ABRAMOWITZ IM, 1968, HDB MATH FUNCTIONS F
[2]   A note on Bernoulli polynomials and solitons [J].
Boyadzhiev, Khristo N. .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2007, 14 (02) :174-178
[3]   Faulhaber and Bernoulli polynomials and solitons [J].
Fairlie, DB ;
Veselov, AP .
PHYSICA D, 2001, 152 (152-153) :47-50
[4]  
Graham Ronald L., 1994, Concrete Mathematics: A Foundation For Computer Science, V2nd
[5]   Bernoulli numbers and solitons [J].
Grosset, MP ;
Veselov, AP .
JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2005, 12 (04) :469-474
[6]   DERIVATIVE POLYNOMIALS FOR TANGENT AND SECANT [J].
HOFFMAN, ME .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (01) :23-30
[7]   FAULHABER,JOHANN AND SUMS OF POWERS [J].
KNUTH, DE .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :277-294
[8]   KORTEWEG-DE VRIES EQUATION AND GENERALIZATIONS .2. EXISTENCE OF CONSERVATION LAWS AND CONSTANTS OF MOTION [J].
Miura, RM ;
GARDNER, CS ;
KRUSKAL, MD .
JOURNAL OF MATHEMATICAL PHYSICS, 1968, 9 (08) :1204-+
[9]   Derivatives and Eulerian numbers [J].
Rzadkowski, Grzegorz .
AMERICAN MATHEMATICAL MONTHLY, 2008, 115 (05) :458-460