A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation

被引:53
作者
Li, Zheng [1 ]
Wang, Hong [2 ]
Yang, Danping [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Fast solution method; Fractional partial differential equation; Fractional phase-field model; Tunable decay behavior; Tunable sharpness; ENERGY STABLE SCHEME; OF-FLUID METHOD; INCOMPRESSIBLE FLUID; DIFFUSION-EQUATIONS; NONUNIFORM SYSTEM; FRONT-TRACKING; TUMOR-GROWTH; LEVEL-SET; FLOWS; APPROXIMATION;
D O I
10.1016/j.jcp.2017.06.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a space-time fractional Allen-Cahn phase-field model that describes the transport of the fluid mixture of two immiscible fluid phases. The space and time fractional order parameters control the sharpness and the decay behavior of the interface via a seamless transition of the parameters. Although they are shown to provide more accurate description of anomalous diffusion processes and sharper interfaces than traditional integer-order phase-field models do, fractional models yield numerical methods with dense stiffness matrices. Consequently, the resulting numerical schemes have significantly increased computational work and memory requirement. We develop a lossless fast numerical method for the accurate and efficient numerical simulation of the space-time fractional phase-field model. Numerical experiments shows the utility of the fractional phase-field model and the corresponding fast numerical method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 49 条
[11]   Conjugate gradient methods for toeplitz systems [J].
Chan, RH ;
Ng, MK .
SIAM REVIEW, 1996, 38 (03) :427-482
[12]   A level set formulation of eulerian interface capturing methods for incompressible fluid flows [J].
Chang, YC ;
Hou, TY ;
Merriman, B ;
Osher, S .
JOURNAL OF COMPUTATIONAL PHYSICS, 1996, 124 (02) :449-464
[13]   A Linear Energy Stable Scheme for a Thin Film Model Without Slope Selection [J].
Chen, Wenbin ;
Conde, Sidafa ;
Wang, Cheng ;
Wang, Xiaoming ;
Wise, Steven M. .
JOURNAL OF SCIENTIFIC COMPUTING, 2012, 52 (03) :546-562
[14]   Nonlinear simulation of tumor growth [J].
Cristini, V ;
Lowengrub, J ;
Nie, Q .
JOURNAL OF MATHEMATICAL BIOLOGY, 2003, 46 (03) :191-224
[15]   Drop breakup in three-dimensional viscous flows [J].
Cristini, V ;
Blawzdziewicz, J ;
Loewenberg, M .
PHYSICS OF FLUIDS, 1998, 10 (08) :1781-1783
[16]  
Davis PJ., 1979, CIRCULANT MATRICES
[17]  
Doi M., 2013, Soft Matter Physics
[18]  
Edwards D. A., 1991, INTERFACIAL TRANSPOR
[19]   Three-dimensional front tracking [J].
Glimm, J ;
Grove, JW ;
Li, XL ;
Shyue, KM ;
Zeng, YN ;
Zhang, Q .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1998, 19 (03) :703-727
[20]   Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique [J].
Hu, HH ;
Patankar, NA ;
Zhu, MY .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 169 (02) :427-462