A space-time fractional phase-field model with tunable sharpness and decay behavior and its efficient numerical simulation

被引:50
作者
Li, Zheng [1 ]
Wang, Hong [2 ]
Yang, Danping [1 ]
机构
[1] East China Normal Univ, Dept Math, Shanghai 200241, Peoples R China
[2] Univ South Carolina, Dept Math, Columbia, SC 29208 USA
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Fast solution method; Fractional partial differential equation; Fractional phase-field model; Tunable decay behavior; Tunable sharpness; ENERGY STABLE SCHEME; OF-FLUID METHOD; INCOMPRESSIBLE FLUID; DIFFUSION-EQUATIONS; NONUNIFORM SYSTEM; FRONT-TRACKING; TUMOR-GROWTH; LEVEL-SET; FLOWS; APPROXIMATION;
D O I
10.1016/j.jcp.2017.06.036
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a space-time fractional Allen-Cahn phase-field model that describes the transport of the fluid mixture of two immiscible fluid phases. The space and time fractional order parameters control the sharpness and the decay behavior of the interface via a seamless transition of the parameters. Although they are shown to provide more accurate description of anomalous diffusion processes and sharper interfaces than traditional integer-order phase-field models do, fractional models yield numerical methods with dense stiffness matrices. Consequently, the resulting numerical schemes have significantly increased computational work and memory requirement. We develop a lossless fast numerical method for the accurate and efficient numerical simulation of the space-time fractional phase-field model. Numerical experiments shows the utility of the fractional phase-field model and the corresponding fast numerical method. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:20 / 38
页数:19
相关论文
共 49 条
  • [1] Fractional Cahn-Hilliard, Allen-Calm and porous medium equations
    Akagi, Goro
    Schimperna, Giulio
    Segatti, Antonio
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (06) : 2935 - 2985
  • [2] [Anonymous], 2003, Soft Matter Physics: An introduction
  • [3] [Anonymous], 2000, Introduction to Fluid Mechanics
  • [4] [Anonymous], 1999, FRACTIONAL DIFFERENT
  • [5] Continuum field description of crack propagation
    Aranson, IS
    Kalatsky, VA
    Vinokur, VM
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (01) : 118 - 121
  • [6] A phase-field description of dynamic brittle fracture
    Borden, Michael J.
    Verhoosel, Clemens V.
    Scott, Michael A.
    Hughes, Thomas J. R.
    Landis, Chad M.
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 217 : 77 - 95
  • [7] FREE ENERGY OF A NONUNIFORM SYSTEM .1. INTERFACIAL FREE ENERGY
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1958, 28 (02) : 258 - 267
  • [8] FREE ENERGY OF A NONUNIFORM SYSTEM .3. NUCLEATION IN A 2-COMPONENT INCOMPRESSIBLE FLUID
    CAHN, JW
    HILLIARD, JE
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1959, 31 (03) : 688 - 699
  • [9] Chaikin P. M., 1995, PRINCIPLES CONDENSED
  • [10] A coupled level-set and volume-of-fluid method for the buoyant rise of gas bubbles in liquids
    Chakraborty, I.
    Biswas, G.
    Ghoshdastidar, P. S.
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2013, 58 (1-2) : 240 - 259