A Levy area between Brownian motion and rough paths with applications to robust nonlinear filtering and rough partial differential equations

被引:15
作者
Diehl, Joscha [1 ]
Oberhauser, Harald [2 ]
Riedel, Sebastian [1 ]
机构
[1] Tech Univ Berlin, Inst Math, D-10623 Berlin, Germany
[2] Univ Oxford, Oxford Man Inst, Oxford 0X2 6ED, England
基金
欧洲研究理事会;
关键词
Existence of path integrals; Integrability of rough differential equations with Gaussian signals; Clark's robustness problem in nonlinear filtering; Viscosity solutions of RPDEs; DRIVEN; THEOREM;
D O I
10.1016/j.spa.2014.08.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We give meaning to differential equations with a rough path term and a Brownian noise term and study their regularity, that is we are interested in equations of the type S-t(eta) = S-0 + integral(t)(0) a(S-r(eta)) dr + integral(t)(0) b (S-r(eta)) o dB(r) + integral(t)(0) c(S-r(eta)) d eta(r) where eta is a deterministic geometric, step-2 rough path and B is a multi-dimensional Brownian motion. We then give two applications: a Feynman-Kac formula for RPDEs and a robust version of the conditional expectation that appears in the nonlinear filtering problem. En passant, we revisit the recent integrability estimates of Cass et al. (2013) for rough differential equations with Gaussian driving signals which might be of independent interest. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:161 / 181
页数:21
相关论文
共 31 条
[1]  
Bayer Christian, 2013, ARXIV13055779
[2]  
Bogachev V I., 2007, Measure Theory, Vvol I, II, DOI DOI 10.1371/journal.pgen.1000083
[3]   A (rough) pathwise approach to a class of non-linear stochastic partial differential equations [J].
Caruana, Michael ;
Friz, Peter K. ;
Oberhauser, Harald .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2011, 28 (01) :27-46
[4]   Partial differential equations driven by rough paths [J].
Caruana, Michael ;
Friz, Peter .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 247 (01) :140-173
[5]   INTEGRABILITY AND TAIL ESTIMATES FOR GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS [J].
Cass, Thomas ;
Litterer, Christian ;
Lyons, Terry .
ANNALS OF PROBABILITY, 2013, 41 (04) :3026-3050
[6]  
Crisan D., 2012, ANN APPL PR IN PRESS
[7]  
Davis M., 2010, OXFORD HDB NONLINEAR
[8]  
Deya A., 2011, PROBAB THEORY REL, P1
[9]   BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH ROUGH DRIVERS [J].
Diehl, Joscha ;
Friz, Peter .
ANNALS OF PROBABILITY, 2012, 40 (04) :1715-1758
[10]  
FERNIQUE X, 1970, CR ACAD SCI A MATH, V270, P1698