QUADRATIC FAMILIES OF ELLIPTIC CURVES AND UNIRATIONALITY OF DEGREE 1 CONIC BUNDLES

被引:22
作者
Kollar, Janos [1 ]
Mella, Massimiliano [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Ferrara, Dipartimento Matemat & Informat, Machiavelli 35, I-44100 Ferrara, Italy
关键词
DEL PEZZO SURFACES; ELEMENTS; BR-2(K(X));
D O I
10.1353/ajm.2017.0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study families of elliptic curves whose coefficients are degree 2 polynomials in a variable t. All such curves together form an algebraic surface which is birational to a conic bundle with 7 singular fibers. We prove that such conic bundles are unirational. As a consequence one obtains that, for infinitely many values of t, the resulting elliptic curve has rank at least 1.
引用
收藏
页码:915 / 936
页数:22
相关论文
共 27 条
  • [21] Mestre JF, 1996, CR ACAD SCI I-MATH, V322, P423
  • [22] THREEFOLDS WHOSE CANONICAL BUNDLES ARE NOT NUMERICALLY EFFECTIVE
    MORI, S
    [J]. ANNALS OF MATHEMATICS, 1982, 116 (01) : 133 - 176
  • [23] ON QUADRATIC FAMILIES OF CM ELLIPTIC CURVES
    Munshi, Ritabrata
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 363 (08) : 4337 - 4358
  • [24] NoTHER M., 1870, Math. Ann., V3, P161, DOI [10.1007/BF01443982, DOI 10.1007/BF01443982]
  • [25] Ranks of elliptic curves
    Rubin, K
    Silverberg, A
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 39 (04): : 455 - 474
  • [26] On the unirationality of del Pezzo surfaces of degree 2
    Salgado, Cecilia
    Testa, Damiano
    Varilly-Alvarado, Anthony
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2014, 90 : 121 - 139
  • [27] Segre B., 1951, MATH NOTAE, V11, P1