QUADRATIC FAMILIES OF ELLIPTIC CURVES AND UNIRATIONALITY OF DEGREE 1 CONIC BUNDLES

被引:22
作者
Kollar, Janos [1 ]
Mella, Massimiliano [2 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
[2] Univ Ferrara, Dipartimento Matemat & Informat, Machiavelli 35, I-44100 Ferrara, Italy
关键词
DEL PEZZO SURFACES; ELEMENTS; BR-2(K(X));
D O I
10.1353/ajm.2017.0024
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study families of elliptic curves whose coefficients are degree 2 polynomials in a variable t. All such curves together form an algebraic surface which is birational to a conic bundle with 7 singular fibers. We prove that such conic bundles are unirational. As a consequence one obtains that, for infinitely many values of t, the resulting elliptic curve has rank at least 1.
引用
收藏
页码:915 / 936
页数:22
相关论文
共 27 条
  • [1] [Anonymous], 1996, ERGEB MATH GRENZGEB
  • [2] [Anonymous], 2004, CAMBRIDGE STUD ADV M
  • [3] [Anonymous], 1967, Die Grundlehren der mathematischen Wissenschaften
  • [4] [Anonymous], 1972, Cubic forms: algebra, geometry, arithmetic
  • [5] [Anonymous], 1994, GRAD TEXTS MATH
  • [6] Bosch S., 1990, ERGEB MATH GRENZGE 3, V21
  • [7] Coray D., 1976, ACTA ARITH, V30, P267, DOI [10.4064/aa-30-3-267-296.T7.4, DOI 10.4064/AA-30-3-267-296.T7.4]
  • [8] Dolgachev IV, 2012, CLASSICAL ALGEBRAIC GEOMETRY: A MODERN VIEW, P1, DOI 10.1017/CBO9781139084437
  • [9] Unirationality of del Pezzo surfaces of degree 2 over finite fields
    Festi, Dino
    van Luijk, Ronald
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2016, 48 : 135 - 140
  • [10] RATIONAL-POINTS OF BOUNDED HEIGHT ON FANO VARIETIES
    FRANKE, J
    MANIN, YI
    TSCHINKEL, Y
    [J]. INVENTIONES MATHEMATICAE, 1989, 95 (02) : 421 - 435