On the global well-posedness of 2-D Boussinesq system with variable viscosity

被引:24
作者
Abidi, Hammadi [1 ]
Zhang, Ping [2 ,3 ,4 ]
机构
[1] Fac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Boussinesq systems; Littlewood-Paley theory; Variable viscosity; NAVIER-STOKES EQUATIONS; FRACTIONAL LAPLACIANS;
D O I
10.1016/j.aim.2016.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the global well-posedness of 2-D Boussinesq system, which has variable kinematic viscosity and with thermal conductivity of vertical bar D vertical bar theta, with general initial data provided that the viscosity coefficient is sufficiently close to some positive constant in L proportional to norm. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1202 / 1249
页数:48
相关论文
共 31 条
[21]  
Hon T. Y., 2005, DISCRETE CONTIN DYN, V12, P1
[22]   DECAY ESTIMATES OF GLOBAL SOLUTION TO 2D INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE VISCOSITY [J].
Huang, J. ;
Paicu, Marius .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (11) :4647-4669
[23]  
Ihnidi I., 2011, ANAL PDE, V4, P247
[24]  
IImidi T., 2011, COMMUN PART DIFF EQ, V36, P420
[25]  
Ilmidi T., 2007, ADV DIFFERENTIAL EQU, V12, P461
[26]  
Pedloski J., 1987, GEOPHYS FLUID DYNAMI
[27]  
Rodrigues J. F., 1992, PITMAN RES NOTES MAT, V274, P93
[28]   LARGE TIME BEHAVIOR OF SOLUTIONS TO THE NAVIER-STOKES EQUATIONS [J].
SCHONBEK, ME .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1986, 11 (07) :733-763
[29]   Global well-posedness for the 2-D Boussinesq system with the temperature-dependent viscosity and thermal diffusivity [J].
Wang, Chao ;
Zhang, Zhifei .
ADVANCES IN MATHEMATICS, 2011, 228 (01) :43-62
[30]   DECAY RESULTS FOR WEAK SOLUTIONS OF THE NAVIER-STOKES EQUATIONS ON RN [J].
WIEGNER, M .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1987, 35 :303-313