On the global well-posedness of 2-D Boussinesq system with variable viscosity

被引:24
作者
Abidi, Hammadi [1 ]
Zhang, Ping [2 ,3 ,4 ]
机构
[1] Fac Sci Tunis, Dept Math, Campus Univ, Tunis 2092, Tunisia
[2] Chinese Acad Sci, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
关键词
Boussinesq systems; Littlewood-Paley theory; Variable viscosity; NAVIER-STOKES EQUATIONS; FRACTIONAL LAPLACIANS;
D O I
10.1016/j.aim.2016.09.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the global well-posedness of 2-D Boussinesq system, which has variable kinematic viscosity and with thermal conductivity of vertical bar D vertical bar theta, with general initial data provided that the viscosity coefficient is sufficiently close to some positive constant in L proportional to norm. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1202 / 1249
页数:48
相关论文
共 31 条
[1]   On the global well-posedness for Boussinesq system [J].
Abidi, H. ;
Hmidi, T. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (01) :199-220
[2]  
Abidi H., 2013, PREPRINT
[3]  
Abidi H, 2007, REV MAT IBEROAM, V23, P537
[4]   On the global well-posedness of 2-D inhomogeneous incompressible Nayier Stokes system with variable viscous coefficient [J].
Abidi, Hammadi ;
Zhang, Ping .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (08) :3755-3802
[5]   Global well-posedness of 3-D density-dependent Navier-Stokes system with variable viscosity [J].
Abidi, Hammadi ;
Zhang Ping .
SCIENCE CHINA-MATHEMATICS, 2015, 58 (06) :1129-1150
[6]   Uniqueness of the Boussinesq system with non linear diffusion [J].
Abidi, Hammadi .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (01) :80-99
[7]  
[Anonymous], 2011, FOURIER ANAL NONLINE
[8]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[9]  
Can C., 2013, ARCH RATION MECH AN, V208, P985
[10]  
Chat D., 2006, ADV MATH, V203, P497