Improving the performance of a non-aqueous lithium-air battery by defective titanium dioxides with oxygen vacancies

被引:38
作者
Wang, Fang [1 ]
Li, Haojun [1 ]
Wu, Qixing [1 ]
Fang, Jie [1 ]
Huang, Yang [1 ]
Yin, Chunli [1 ]
Xu, Yanghai [1 ]
Luo, Zhongkuan [1 ]
机构
[1] Shenzhen Univ, Coll Chem & Environm Engn, Shenzhen Key Lab New Lithium Ion Batteries & Meso, Shenzhen 518060, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
catalyst; titanium dioxide; oxygen vacancy; lithium-air battery; non-aqueous; LI-O-2; BATTERIES; NANOTUBE ARRAYS; TIO2; NANOFIBERS; LI-ION; CARBON; CATHODE; CATALYST; SURFACE; OXIDE; STABILITY;
D O I
10.1016/j.electacta.2016.04.007
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
In this work, we proposed using titanium dioxides (TiO2) with oxygen vacancies (H-TiO2) as cathode catalysts to improve the electrochemical performance of non-aqueous lithium-air batteries. Such H-TiO2 catalysts were attained by a facile heat treatment of rutile TiO2 and the existence of vacancies was confirmed by Raman spectra and X-ray photoelectron spectroscopy (XPS). It was demonstrated that due to the presence of defects which can facilitate the adsorption and dissociation of oxygen, the in-house lithium-air battery with H-TiO2 can be discharged at the current densities of 0.3 and 0.5 mA cm(-2) while maintaining the specific capacities of 3.2 and 2.8 mAh cm(-2), respectively, much higher than those of the batteries without catalysts or with pristine rutile TiO2. In addition, the cycling test showed that the battery with H-TiO2 can undergo 400 and 372 cycles, respectively, at the current densities of 0.3 and 0.5 mA cm(-2) with a fixed specific capacity of 0.1 mAh cm(-2) and a cutoff discharge voltage of 2.0 V. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 7
页数:7
相关论文
共 50 条
[21]   Modeling discharge deposit formation and its effect on lithium-air battery performance [J].
Wang, Yun .
ELECTROCHIMICA ACTA, 2012, 75 :239-246
[22]   A gradient porous cathode for non-aqueous lithium-air batteries leading to a high capacity [J].
Tan, P. ;
Shyy, W. ;
An, L. ;
Wei, Z. H. ;
Zhao, T. S. .
ELECTROCHEMISTRY COMMUNICATIONS, 2014, 46 :111-114
[23]   A carbon powder-nanotube composite cathode for non-aqueous lithium-air batteries [J].
Tan, P. ;
Shyy, W. ;
Wei, Z. H. ;
An, L. ;
Zhao, T. S. .
ELECTROCHIMICA ACTA, 2014, 147 :1-8
[24]   The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes [J].
Hardwick, Laurence J. ;
Bruce, Peter G. .
CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2012, 16 (04) :178-185
[25]   Electrochemical performance of a nonaqueous rechargeable lithium-air battery [J].
Fang Wang ;
Chun-Sheng Liang ;
Yan Pang ;
Yang-Hai Xu ;
Zhong-Kuan Luo .
Ionics, 2013, 19 :1791-1793
[26]   What is the ideal distribution of electrolyte inside cathode pores of non-aqueous lithium-air batteries? [J].
Tan, Peng ;
Shyy, Wei ;
Zhao, Tianshou .
SCIENCE BULLETIN, 2015, 60 (10) :975-976
[27]   Electrochemical performance of a nonaqueous rechargeable lithium-air battery [J].
Wang, Fang ;
Liang, Chun-Sheng ;
Pang, Yan ;
Xu, Yang-Hai ;
Luo, Zhong-Kuan .
IONICS, 2013, 19 (12) :1791-1793
[28]   Autoxidation in amide-based electrolyte and its suppression for enhanced oxygen efficiency and cycle performance in non-aqueous lithium oxygen battery [J].
Kim, Dong Wook ;
Lee, Dong Hun ;
Ahn, Su Mi ;
Kim, Do Youb ;
Suk, Jungdon ;
Choi, Dong Hoon ;
Kang, Yongku .
JOURNAL OF POWER SOURCES, 2017, 347 :186-192
[29]   Preparation of Porous Ag@Ni Foam and Its Application for Non-aqueous Lithium-air Batteries [J].
Zhang Lei ;
Zhu Ding ;
Song Ming ;
Chen Yungui ;
Wang Xiaofei .
RARE METAL MATERIALS AND ENGINEERING, 2014, 43 (10) :2507-2510
[30]   In Situ Infrared Micro and Nanospectroscopy for Discharge Chemical Composition Investigation of Non-Aqueous Lithium-Air Cells [J].
Nepel, Thayane C. M. ;
Anchieta, Chayene G. ;
Cremasco, Leticia F. ;
Sousa, Bianca P. ;
Miranda, Andre N. ;
Oliveira, Lorrane C. C. B. ;
Francisco, Bruno A. B. ;
Julio, Julia P. de O. ;
Maia, Francisco C. B. ;
Freitas, Raul O. ;
Rodella, Cristiane B. ;
Filho, Rubens M. ;
Doubek, Gustavo .
ADVANCED ENERGY MATERIALS, 2021, 11 (45)