ZnFe2O4/g-C3N4 S-scheme photocatalyst with enhanced adsorption and photocatalytic activity for uranium(VI) removal

被引:198
|
作者
Dai, Zhongran [1 ]
Zhen, Yuan [1 ]
Sun, Yusu [1 ]
Li, Le [1 ]
Ding, Dexin [1 ]
机构
[1] Univ South China, Key Discipline Lab Natl Def Biotechnol Uranium Mi, Hengyang 421001, Peoples R China
基金
中国国家自然科学基金;
关键词
Uranium; Removal; Adsorption; Photoreduction; Wastewater; LIGHT; HETEROJUNCTION; REDUCTION; EFFICIENT; U(VI); OXIDE; SEAWATER; G-C3N4; TIO2;
D O I
10.1016/j.cej.2021.129002
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The reduction of soluble hexavalent uranium (U(VI)) to insoluble tetravalent uranium (U(IV)) by photocatalytic method is an emerging and effective approach to remove U(VI) from aqueous solution. In this study, the ZnFe2O4/g-C3N4 (ZFOCN) step-scheme (S-scheme) heterojunction was synthesized and used as both adsorbent and photocatalyst for remove U(VI). The batch adsorption experiments showed that the adsorption process of U (VI) by ZFOCN matches the Langmuir isotherm and pseudo-second-order models, and its maximum Langmuir adsorption capacity (qmax) for U(VI) reached 699.3 mg/g at pH 5.0. In addition, ZFOCN exhibited superior photocatalysis properties for reduction of U(VI) under visible LED light irradiation, and its optimal removal capacity for U(VI) via simultaneous adsorption and photoreduction achieved up to 1892.4 mg/g, with the removal rate being 94.62%, which is significantly higher than the physicochemical adsorption. Furthermore, the photoreduction mechanism of U(VI) by ZFOCN is explored by FT-IR, XPS, XRD, EPR and DFT calculations, which indicated that the excellent photocatalysis performance of ZFOCN was mainly due to its strong visible light absorbability and narrow band gap. The U(VI) could be captured on the surface of ZFOCN, and then reduced to U (IV) under visible LED light illumination. Moreover, the removal capacity of U(VI) by ZFOCN remained over 90% after five cycles of tests, and it has negligible decrease in the presence of co-existing metal ions.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Enhanced Photocatalytic Performance of Hierarchical ZnFe2O4/g-C3N4 Heterojunction Composite Microspheres
    Wu, Yuehan
    Wang, Yu
    Di, Andi
    Yang, Xu
    Chen, Gang
    CATALYSIS LETTERS, 2018, 148 (07) : 2179 - 2189
  • [2] Enhanced Photocatalytic Performance of Hierarchical ZnFe2O4/g-C3N4 Heterojunction Composite Microspheres
    Yuehan Wu
    Yu Wang
    Andi Di
    Xu Yang
    Gang Chen
    Catalysis Letters, 2018, 148 : 2179 - 2189
  • [3] Research on synthesis and photocatalytic activity of ZnFe2O4/Ag/g-C3N4 nanosheets composites
    Kang, Song Gun
    Choe, Tong Ho
    Ryom, Chol Ung
    Ri, Myong Chol
    COMPOSITE INTERFACES, 2021, 28 (03) : 223 - 235
  • [4] A facile synthesis of SnS2/g-C3N4 S-scheme heterojunction photocatalyst with enhanced photocatalytic performance
    Thanh Huong Nguyen Thi
    Ha Tran Huu
    Hung Nguyen Phi
    Van Phuc Nguyen
    Quoc Dat Le
    Lan Nguyen Thi
    Thi Thuy Trang Phan
    Vien Vo
    JOURNAL OF SCIENCE-ADVANCED MATERIALS AND DEVICES, 2022, 7 (02):
  • [5] g-C3N4/TiO2 S-scheme heterojunction photocatalyst with enhanced photocatalytic Carbamazepine degradation and mineralization
    Kane, Abdoulaye
    Chafiq, Latifa
    Dalhatou, Sadou
    Bonnet, Pierre
    Nasr, Maryline
    Gaillard, Nathalie
    Dikdim, Jean Marie Dangwang
    Monier, Guillaume
    Assadi, Aymen Amine
    Zeghioud, Hicham
    JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY A-CHEMISTRY, 2022, 430
  • [6] Boosted photocatalytic removal of Cr(VI) using MoS2 modified g-C3N4/ZnFe2O4 magnetic heterojunction composites
    Wang, Xiaodong
    Dai, Yongxun
    Tian, Chen
    Zhang, Huize
    Li, Xiwen
    Liu, Wenlong
    Li, Weibing
    Kuang, Shaoping
    Tong, Hongtao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2022, 162 : 72 - 82
  • [7] Boosted photocatalytic removal of Cr(VI) using MoS2 modified g-C3N4/ZnFe2O4 magnetic heterojunction composites
    Wang, Xiaodong
    Dai, Yongxun
    Tian, Chen
    Zhang, Huize
    Li, Xiwen
    Liu, Wenlong
    Li, Weibing
    Kuang, Shaoping
    Tong, Hongtao
    Process Safety and Environmental Protection, 2022, 162 : 72 - 82
  • [8] Palladium modified ZnFe2O4/g-C3N4 nanocomposite as an efficiently magnetic recycling photocatalyst
    Zhang, Huoli
    Zhu, Changxin
    Zhang, Guanghui
    Li, Man
    Tang, Qingjie
    Cao, Jianliang
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 288 (288)
  • [9] In situ fabrication of Bi2Se3/g-C3N4 S-scheme photocatalyst with improved photocatalytic activity
    He, Rongan
    Ou, Sijiao
    Liu, Yexuan
    Liu, Yu
    Xu, Difa
    CHINESE JOURNAL OF CATALYSIS, 2022, 43 (02) : 370 - 378
  • [10] Ternary Composite of g-C3N4/ZnFe2O4/Fe2O3: Hydrothermal Synthesis and Enhanced Photocatalytic Performance
    Yang, Nannan
    Hu, Pengfei
    Chen, Changchun
    Wang, Yifeng
    Pan, Lin
    CHEMISTRYSELECT, 2019, 4 (24): : 7308 - 7316