Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy

被引:52
作者
Chen, Yan [1 ,2 ]
Yang, Yange [1 ]
Zhang, Wei [1 ]
Zhang, Tao [1 ,3 ]
Wang, Fuhui [1 ,3 ]
机构
[1] Chinese Acad Sci, Inst Met Res, Lab Corros & Protect, Wencui RD 62, Shenyang 110016, Peoples R China
[2] Univ Chinese Acad Sci, Yuquan RD 19, Beijing 110049, Peoples R China
[3] Northeastern Univ, Sch Mat Sci & Engn, Key Lab Anisotropy & Texture Mat MOE, Wenhua RD 3-11, Shenyang 110819, Peoples R China
基金
中国国家自然科学基金;
关键词
Magnesium; Plasma electrolytic oxidation; Second phase; PLASMA ELECTROLYTIC OXIDATION; KOH-ALUMINATE SOLUTIONS; SCANNING KELVIN PROBE; CAST AM50 ALLOY; MAGNESIUM ALLOY; AL ALLOYS; FORCE MICROSCOPY; ANODIC FILMS; BETA-PHASE; BEHAVIOR;
D O I
10.1016/j.jallcom.2017.05.010
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Plasma electrolytic oxidation (PEO) treatment has been performed on AZ91 Mg alloy in a silicate-containing alkaline electrolyte to disclose the relationship between second phase and resultant coating. The morphology and corrosion behavior were characterized for PEO coatings on three different AZ91 substrates with microstructures altered by heat treatment. In the presence of beta phase, both the substrate and PEO coating exhibit enhanced corrosion resistance with finer and more evenly distributed b phase precipitates. In the as-cast AZ91, the anodized coating displays chemically and morphologically discontinuity on a and b phase with very coarse and defective regions on two-phase boundaries. In aged AZ91 with nano-sized b phase precipitates, the PEO coating shows no obvious difference on two-phase boundaries and is more homogenous with fewer pores and defects. The residual stress values given by Xray diffraction ( XRD) analysis indicate that PEO coating on aged AZ91 with finest b phase has the smallest stress which might be the reason for its improved corrosion resistance under synergetic effect of corrosive ions and residual stress. Conversely, in the absence of b phase, i.e. after solid solution treatment, the coating is characterized by the most inhomogeneous microstructure and the worst corrosion resistance, presumably owing to the absence of protective aluminum-containing oxides in the coating and more severe localized oxidation behavior adjacent to AlMn phase. Understanding the effect of second phase on PEO coating will enable us to optimize porous oxide structures for improved corrosion resistance by properly altering the substrate microstructure. (C) 2017 Published by Elsevier B.V.
引用
收藏
页码:92 / 103
页数:12
相关论文
共 43 条
[1]   THE INFLUENCE OF CHEMICAL-COMPOSITION AND FABRICATION PROCEDURES ON THE PROPERTIES OF ANODIZED ALUMINUM SURFACES [J].
AKERET, R ;
BICHSEL, H ;
SCHWALL, E ;
SIMON, E ;
TEXTOR, M .
TRANSACTIONS OF THE INSTITUTE OF METAL FINISHING, 1990, 68 (pt 1) :20-28
[2]   Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy [J].
Ambat, R ;
Aung, NN ;
Zhou, W .
CORROSION SCIENCE, 2000, 42 (08) :1433-1455
[3]   Volta potential of second phase particles in extruded AZ80 magnesium alloy [J].
Andreatta, F ;
Apachitei, I ;
Kodentsov, AA ;
Dzwonczyk, J ;
Duszczyk, J .
ELECTROCHIMICA ACTA, 2006, 51 (17) :3551-3557
[4]   Microgalvanic activity of an Mg-Al-Ca-based alloy studied by scanning Kelvin probe force microscopy [J].
Apachitei, I. ;
Fratila-Apachitei, L. E. ;
Duszczyk, J. .
SCRIPTA MATERIALIA, 2007, 57 (11) :1012-1015
[5]   Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings [J].
Arrabal, R. ;
Matykina, E. ;
Viejo, F. ;
Skeldon, P. ;
Thompson, G. E. .
CORROSION SCIENCE, 2008, 50 (06) :1744-1752
[6]  
Belevantsev VI, 1998, PROT MET+, V34, P416
[7]   Anodizing treatments for magnesium alloys and their effecton corrosion resistance in various environments [J].
Blawert, Carsten ;
Dietzel, Wolfgang ;
Ghali, Edward ;
Song, Guangling .
ADVANCED ENGINEERING MATERIALS, 2006, 8 (06) :511-533
[8]   Formation of anodic films on magnesium alloys in an alkaline phosphate electrolyte [J].
Bonilla, FA ;
Berkani, A ;
Liu, Y ;
Skeldon, P ;
Thompson, GE ;
Habazaki, H ;
Shimizu, K ;
John, C ;
Stevens, K .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2002, 149 (01) :B4-B13
[9]   Review of Corrosion-Resistant Conversion Coatings for Magnesium and Its Alloys [J].
Chen, X. B. ;
Birbilis, N. ;
Abbott, T. B. .
CORROSION, 2011, 67 (03)
[10]   Macroscopic and local filming behavior of AA2024 T3 aluminum alloy during anodizing in sulfuric acid electrolyte [J].
Curioni, M. ;
de Miera, M. Saenz ;
Skeldon, P. ;
Thompson, G. E. ;
Ferguson, J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (08) :C387-C395