Fidelity decay and entropy production in many-particle systems after random interaction quench

被引:9
作者
Haldar, Sudip Kumar [1 ]
Chavda, N. D. [2 ]
Vyas, Manan [3 ]
Kota, V. K. B. [1 ]
机构
[1] Phys Res Lab, Div Theoret Phys, Ahmadabad 380009, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Dept Appl Phys, Fac Engn & Technol, Vadodara 390001, India
[3] Univ Nacl Autonoma Mexico, Inst Ciencias Fis, Cuernavaca 62210, Morelos, Mexico
关键词
quantum quenches; quantum chaos; random matrix theory and extensions; RANDOM-MATRIX ENSEMBLES; STATISTICAL-MECHANICS; QUANTUM CHAOS; BODY SYSTEMS; DYNAMICS; THERMALIZATION; RELAXATION; COLLOQUIUM;
D O I
10.1088/1742-5468/2016/04/043101
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We analyze the effect of spin degree of freedom on fidelity decay and entropy production of a many-particle fermionic (bosonic) system in a mean-field, quenched by a random two-body interaction preserving many-particle spin S. The system Hamiltonian is represented by embedded Gaussian orthogonal ensemble (EGOE) of random matrices (for time-reversal and rotationally invariant systems) with one plus two-body interactions preserving S for fermions/bosons. EGOE are paradigmatic models to study the dynamical transition from integrability to chaos in interacting many-body quantum systems. A simple general picture, in which the variances of the eigenvalue density play a central role, is obtained for describing the short-time dynamics of fidelity decay and entropy production. Using some approximations, an EGOE formula for the time (t(sat)) for the onset of saturation of entropy, is also derived. These analytical EGOE results are in good agreement with numerical calculations. Moreover, both fermion and boson systems show significant spin dependence on the relaxation dynamics of the fidelity and entropy.
引用
收藏
页数:23
相关论文
共 64 条
[1]  
Abramowitz M., 1964, National Bureau of Standards Applied Mathematics Series, DOI DOI 10.1119/1.15378
[2]  
Angom D, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.016209
[3]   Fidelity decay in interacting two-level boson systems: Freezing and revivals [J].
Benet, Luis ;
Hernandez-Quiroz, Saul ;
Seligman, Thomas H. .
PHYSICAL REVIEW E, 2011, 83 (05)
[4]   Irregular dynamics in a one-dimensional Bose system [J].
Berman, GP ;
Borgonovi, F ;
Izrailev, FM ;
Smerzi, A .
PHYSICAL REVIEW LETTERS, 2004, 92 (03) :4
[5]   Effect of Rare Fluctuations on the Thermalization of Isolated Quantum Systems [J].
Biroli, Giulio ;
Kollath, Corinna ;
Laeuchli, Andreas M. .
PHYSICAL REVIEW LETTERS, 2010, 105 (25)
[6]   Time dependence of correlation functions following a quantum quench [J].
Calabrese, P ;
Cardy, J .
PHYSICAL REVIEW LETTERS, 2006, 96 (13)
[7]   Quantum Quench in the Transverse-Field Ising Chain [J].
Calabrese, Pasquale ;
Essler, Fabian H. L. ;
Fagotti, Maurizio .
PHYSICAL REVIEW LETTERS, 2011, 106 (22)
[8]   Optimal Control at the Quantum Speed Limit [J].
Caneva, T. ;
Murphy, M. ;
Calarco, T. ;
Fazio, R. ;
Montangero, S. ;
Giovannetti, V. ;
Santoro, G. E. .
PHYSICAL REVIEW LETTERS, 2009, 103 (24)
[9]   Time Evolution of Local Observables After Quenching to an Integrable Model [J].
Caux, Jean-Sebastien ;
Essler, Fabian H. L. .
PHYSICAL REVIEW LETTERS, 2013, 110 (25)
[10]   One dimensional bosons: From condensed matter systems to ultracold gases [J].
Cazalilla, M. A. ;
Citro, R. ;
Giamarchi, T. ;
Orignac, E. ;
Rigol, M. .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1405-1466