How Substitutional Point Defects in Two-Dimensional WS2 Induce Charge Localization, Spin-Orbit Splitting, and Strain

被引:115
作者
Schuler, Bruno [1 ]
Lee, Jun-Ho [1 ,2 ]
Kastl, Christoph [1 ,3 ,4 ]
Cochrane, Katherine A. [1 ]
Chen, Christopher T. [1 ]
Refaely-Abramson, Sivan [1 ,12 ]
Yuan, Shengjun [5 ,6 ]
van Veen, Edo [7 ]
Roldan, Rafael [8 ]
Borys, Nicholas J. [9 ]
Koch, Roland J. [10 ]
Aloni, Shaul [1 ]
Schwartzberg, Adam M. [1 ]
Ogletree, D. Frank [1 ]
Neaton, Jeffrey B. [1 ,2 ,11 ]
Weber-Bargionit, Alexander [1 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[3] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[4] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[5] Wuhan Univ, Key Lab Artificial Micro & Nanostruct, Minist Educ, Wuhan 430072, Hubei, Peoples R China
[6] Wuhan Univ, Sch Phys & Technol, Wuhan 430072, Hubei, Peoples R China
[7] Radboud Univ Nijmegen, Inst Mol & Mat, Heijendaalseweg 135, NL-6525 AJ Nijmegen, Netherlands
[8] ICMM CSIC, Inst Ciencia Mat Madrid, E-28049 Madrid, Spain
[9] Montana State Univ, Dept Phys, Bozeman, MT 59717 USA
[10] Lawrence Berkeley Natl Lab, Adv Light Source, Berkeley, CA 94720 USA
[11] Kavli Energy Nanosci Inst Berkeley, Berkeley, CA 94720 USA
[12] Weizmann Inst Sci, Dept Mat & Interfaces, IL-7610001 Rehovot, Israel
基金
瑞士国家科学基金会; 国家重点研发计划;
关键词
point defects; 2D materials; transition metal dichalcogenide; WS2; noncontact atomic force microscopy (nc-AFM); density functional theory (DFT); tight binding; TUNGSTEN DISULFIDE; GRAIN-BOUNDARIES; MOS2; GRAPHENE; PHOTOLUMINESCENCE; SPECTROSCOPY; MICROSCOPY; MONOLAYERS; EMITTERS; BANDGAP;
D O I
10.1021/acsnano.9b04611
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Control of impurity concentrations in semiconducting materials is essential to device technology. Because of their intrinsic confinement, the properties of two-dimensional semiconductors such as transition metal dichalcogenides (TMDs) are more sensitive to defects than traditional bulk materials. The technological adoption of TMDs is dependent on the mitigation of deleterious defects and guided incorporation of functional foreign atoms. The first step toward impurity control is the identification of defects and assessment of their electronic properties. Here, we present a comprehensive study of point defects in monolayer tungsten disulfide (WS2) grown by chemical vapor deposition using scanning tunneling microscopy/spectroscopy, CO-tip noncontact atomic force microscopy, Kelvin probe force spectroscopy, density functional theory, and tight-binding calculations. We observe four different substitutional defects: chromium (Cr-W) and molybdenum (Mo-W) at a tungsten site, oxygen at sulfur sites in both top and bottom layers (O-S top/bottom), and two negatively charged defects (CD type I and CD type II). Their electronic fingerprints unambiguously corroborate the defect assignment and reveal the presence or absence of in-gap defect states. Cr-W forms three deep unoccupied defect states, two of which arise from spin-orbit splitting. The formation of such localized trap states for Cr-W differs from the Mo-W case and can be explained by their different d shell energetics and local strain, which we directly measured. Utilizing a tight-binding model the electronic spectra of the isolectronic substitutions O-S and Cr-W are mimicked in the limit of a zero hopping term and infinite on-site energy at a S and W site, respectively. The abundant CDs are negatively charged, which leads to a significant band bending around the defect and a local increase of the contact potential difference. In addition, CD-rich domains larger than 100 nm are observed, causing a work function increase of 1.1 V. While most defects are electronically isolated, we also observed hybrid states formed between Cr-W dimers. The important role of charge localization, spin-orbit coupling, and strain for the formation of deep defect states observed at substitutional defects in WS2 as reported here will guide future efforts of targeted defect engineering and doping of TMDs.
引用
收藏
页码:10520 / 10534
页数:15
相关论文
共 101 条
[1]   Surface Defects on Natural MoS2 [J].
Addou, Rafik ;
Colombo, Luigi ;
Wallace, Robert M. .
ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (22) :11921-11929
[2]   Tuning electronic properties of transition-metal dichalcogenides via defect charge [J].
Aghajanian, Martik ;
Mostofi, Arash A. ;
Lischner, Johannes .
SCIENTIFIC REPORTS, 2018, 8
[3]  
Aharonovich I, 2016, NAT PHOTONICS, V10, P631, DOI [10.1038/nphoton.2016.186, 10.1038/NPHOTON.2016.186]
[4]   FREQUENCY-MODULATION DETECTION USING HIGH-Q CANTILEVERS FOR ENHANCED FORCE MICROSCOPE SENSITIVITY [J].
ALBRECHT, TR ;
GRUTTER, P ;
HORNE, D ;
RUGAR, D .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (02) :668-673
[5]   Covalent Nitrogen Doping and Compressive Strain in MoS2 by Remote N2 Plasma Exposure [J].
Azcatl, Angelica ;
Qin, Xiaoye ;
Prakash, Abhijith ;
Zhang, Chenxi ;
Cheng, Lanxia ;
Wang, Qingxiao ;
Lu, Ning ;
Kim, Moon J. ;
Kim, Jiyoung ;
Cho, Kyeongjae ;
Addou, Rafik ;
Hinkle, Christopher L. ;
Appenzeller, Joerg ;
Wallace, Robert M. .
NANO LETTERS, 2016, 16 (09) :5437-5443
[6]   Visualizing nanoscale excitonic relaxation properties of disordered edges and grain boundaries in monolayer molybdenum disulfide [J].
Bao, Wei ;
Borys, Nicholas J. ;
Ko, Changhyun ;
Suh, Joonki ;
Fan, Wen ;
Thron, Andrew ;
Zhang, Yingjie ;
Buyanin, Alexander ;
Zhang, Jie ;
Cabrini, Stefano ;
Ashby, Paul D. ;
Weber-Bargioni, Alexander ;
Tongay, Sefaattin ;
Aloni, Shaul ;
Ogletree, D. Frank ;
Wu, Junqiao ;
Salmeron, Miquel B. ;
Schuck, P. James .
NATURE COMMUNICATIONS, 2015, 6
[7]   Identifying substitutional oxygen as a prolific point defect in monolayer transition metal dichalcogenides [J].
Barja, Sara ;
Refaely-Abramson, Sivan ;
Schuler, Bruno ;
Qiu, Diana Y. ;
Pulkin, Artem ;
Wickenburg, Sebastian ;
Ryu, Hyejin ;
Ugeda, Miguel M. ;
Kastl, Christoph ;
Chen, Christopher ;
Hwang, Choongyu ;
Schwartzberg, Adam ;
Aloni, Shaul ;
Mo, Sung-Kwan ;
Ogletree, D. Frank ;
Crommie, Michael F. ;
Yazyev, Oleg, V ;
Louie, Steven G. ;
Neaton, Jeffrey B. ;
Weber-Bargioni, Alexander .
NATURE COMMUNICATIONS, 2019, 10 (1)
[8]  
Barja S, 2016, NAT PHYS, V12, P751, DOI [10.1038/nphys3730, 10.1038/NPHYS3730]
[9]   Tight-binding model and direct-gap/indirect-gap transition in single-layer and multilayer MoS2 [J].
Cappelluti, E. ;
Roldan, R. ;
Silva-Guillen, J. A. ;
Ordejon, P. ;
Guinea, F. .
PHYSICAL REVIEW B, 2013, 88 (07)
[10]   Optical identification of sulfur vacancies: Bound excitons at the edges of monolayer tungsten disulfide [J].
Carozo, Victor ;
Wang, Yuanxi ;
Fujisawa, Kazunori ;
Carvalho, Bruno R. ;
McCreary, Amber ;
Feng, Simin ;
Lin, Zhong ;
Zhou, Chanjing ;
Perea-Lopez, Nestor ;
Laura Elias, Ana ;
Kabius, Bernd ;
Crespi, Vincent H. ;
Terrones, Mauricio .
SCIENCE ADVANCES, 2017, 3 (04)