Purpose Prediction of excess pore water pressure and estimation of soil parameters are the two key interests for consolidation problems, which can be mathematically quantified by a set of partial differential equations (PDEs). Generally, there are challenges in solving these two issues using traditional numerical algorithms, while the conventional data-driven methods require massive data sets for training and exhibit negative generalization potential. This paper aims to employ the physics-informed neural networks (PINNs) for solving both the forward and inverse problems. Design/methodology/approach A typical consolidation problem with continuous drainage boundary conditions is firstly considered. The PINNs, analytical, and finite difference method (FDM) solutions are compared for the forward problem, and the estimation of the interface parameters involved in the problem is discussed for the inverse problem. Furthermore, the authors also explore the effects of hyperparameters and noisy data on the performance of forward and inverse problems, respectively. Finally, the PINNs method is applied to the more complex consolidation problems. Findings The overall results indicate the excellent performance of the PINNs method in solving consolidation problems with various drainage conditions. The PINNs can provide new ideas with a broad application prospect to solve PDEs in the field of geotechnical engineering, and also exhibit a certain degree of noise resistance for estimating the soil parameters. Originality/value This study presents the potential application of PINNs for the consolidation of soils. Such a machine learning algorithm helps to obtain remarkably accurate solutions and reliable parameter estimations with fewer and average-quality data, which is beneficial in engineering practice.
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
Trahan, Corey
Loveland, Mark
论文数: 0引用数: 0
h-index: 0
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
Loveland, Mark
Dent, Samuel
论文数: 0引用数: 0
h-index: 0
机构:
US Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USAUS Army Engineer Res & Dev Ctr, Informat & Technol Lab, 3909 Halls Ferry Rd, Vicksburg, MS 39180 USA
机构:
Instituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, ChileInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Rojas, Sergio
Maczuga, Pawel
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile
Maczuga, Pawel
论文数: 引用数:
h-index:
机构:
Muñoz-Matute, Judit
论文数: 引用数:
h-index:
机构:
Pardo, David
Paszyński, Maciej
论文数: 0引用数: 0
h-index: 0
机构:
AGH University of Krakow, PolandInstituto de Matemáticas, Pontificia Universidad Católica de Valparaíso, Chile