Stochastic perturbation of optical solitons in Schrodinger-Hirota equation

被引:71
作者
Biswas, A [1 ]
机构
[1] Tennessee State Univ, Ctr Excellence ISEM, Dept Phys & Math, Nashville, TN 37209 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.optcom.2004.06.047
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The soliton perturbation theory is used to study and analyze the stochastic perturbation of optical solitons, governed by the Schrodinger-Hirota equation, in addition to deterministic perturbations. The Langevin equations are derived and analyzed. The deterministic perturbations that are considered here are due to the attenuation and bandpass filtering. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:461 / 466
页数:6
相关论文
共 35 条
[11]   Inverse scattering method and vector higher order non-linear Schrodinger equation [J].
Ghosh, S ;
Nandy, S .
NUCLEAR PHYSICS B, 1999, 561 (03) :451-466
[12]   Controlling soliton perturbations with phase-sensitive amplification [J].
Goedde, CG ;
Kath, WL ;
Kumar, P .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1997, 14 (06) :1371-1379
[13]   EFFECTS OF FIBER NONLINEARITIES AND AMPLIFIER SPACING ON ULTRA-LONG DISTANCE TRANSMISSION [J].
GORDON, JP ;
MOLLENAUER, LF .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 1991, 9 (02) :170-173
[14]   RANDOM-WALK OF COHERENTLY AMPLIFIED SOLITONS IN OPTICAL FIBER TRANSMISSION [J].
GORDON, JP ;
HAUS, HA .
OPTICS LETTERS, 1986, 11 (10) :665-667
[15]   Theory of information transfer in optical fibers: A tutorial review [J].
Hasegawa, A .
OPTICAL FIBER TECHNOLOGY, 2004, 10 (02) :150-170
[16]  
Hasegawa A., 1995, Solitons in Optical Communications
[17]   Dynamics of solitons and quasisolitons of the cubic third-order nonlinear Schrödinger equation [J].
Karpman, V.I. ;
Rasmussen, J.J. ;
Shagalov, A.G. .
Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2001, 64 (2 II) :266141-266141
[18]   PERTURBATION-THEORY FOR SOLITONS IN OPTICAL FIBERS [J].
KAUP, DJ .
PHYSICAL REVIEW A, 1990, 42 (09) :5689-5694
[19]  
Kivshar Y.S., 2003, Optical Solitons
[20]   GENERATION OF ASYMPTOTICALLY STABLE OPTICAL SOLITONS AND SUPPRESSION OF THE GORDON-HAUS EFFECT [J].
KODAMA, Y ;
HASEGAWA, A .
OPTICS LETTERS, 1992, 17 (01) :31-33